Accessibility of the stochastic gravitational wave background from magnetars to the interferometric gravitational wave detectors

被引:39
|
作者
Wu, Cheng-Jian [1 ]
Mandic, Vuk [1 ]
Regimbau, Tania [2 ]
机构
[1] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA
[2] CNRS, Observ Cote Azur, Dept Artemis, F-06304 Nice, France
来源
PHYSICAL REVIEW D | 2013年 / 87卷 / 04期
基金
美国国家科学基金会;
关键词
MAGNETIZED NEUTRON-STARS; X-RAY; RADIATION; HISTORY; FIELDS; INSTABILITY; PULSAR; STATE;
D O I
10.1103/PhysRevD.87.042002
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Magnetars have been proposed as sources of gravitational waves, potentially observable by current and future terrestrial gravitational-wave detectors. In this paper, we calculate the stochastic gravitational wave background generated by summing the contributions from all magnetars in the Universe, and we study its accessibility to the second- and third-generation gravitational-wave detector networks. We perform systematic scans of the parameter space in this model, allowing the magnetic field, the ellipticity, the initial period, and the rate of magnetars to vary over the currently believed range of values. We also consider different proposed configurations of the magnetic field (poloidal, toroidal, and twisted torus) and different proposed star-formation histories. We identify regions in the parameter space of poloidal and toroidal models that will be accessible to the second- and third-generation gravitational-wave detectors and conclude that the twisted-torus models are likely out of reach of these detectors. The poloidal field configuration with a type II superconductor equation of state in the interior, or with a highly disordered magnetic field, and the toroidal configuration with a very strong toroidal magnetic field in the interior (> 10(16) G) are the most promising in terms of gravitational-wave detection. DOI: 10.1103/PhysRevD.87.042002
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Accessibility of the gravitational-wave background due to binary coalescences to second and third generation gravitational-wave detectors
    Wu, C.
    Mandic, V.
    Regimbau, T.
    PHYSICAL REVIEW D, 2012, 85 (10):
  • [22] Angular resolution of the search for anisotropic stochastic gravitational-wave background with terrestrial gravitational-wave detectors
    Floden, Erik
    Mandic, Vuk
    Matas, Andrew
    Tsukada, Leo
    PHYSICAL REVIEW D, 2022, 106 (02)
  • [23] Detection of gravitational wave bursts by interferometric detectors
    Arnaud, N
    Cavalier, F
    Davier, M
    Hello, P
    PHYSICAL REVIEW D, 1999, 59 (08) : 1 - 9
  • [24] Interferometric readout for acoustic gravitational wave detectors
    Conti, L
    De Rosa, A
    Marin, F
    Taffarello, L
    Cerdonio, M
    General Relativity and Gravitational Physics, 2005, 751 : 75 - 81
  • [25] Interferometric Gravitational Wave Detectors vibrational isolation
    DeSalvo, R
    CURRENT DEVELOPMENTS IN LENS DESIGN AND OPTICAL SYSTEMS ENGINEERING, 2000, 4093 : 98 - 106
  • [26] Analysis of data from interferometric gravitational-wave detectors
    Brady, PR
    GRAVITATIONAL-WAVE DETECTION, 2003, 4856 : 193 - 203
  • [27] The astrophysical gravitational wave stochastic background
    Tania Regimbau
    ResearchinAstronomyandAstrophysics, 2011, 11 (04) : 369 - 390
  • [28] The astrophysical gravitational wave stochastic background
    Regimbau, Tania
    RESEARCH IN ASTRONOMY AND ASTROPHYSICS, 2011, 11 (04) : 369 - 390
  • [29] Interferences in the stochastic gravitational wave background
    Neves da Cunha, Disrael Camargo
    Ringeval, Christophe
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2021, (08):
  • [30] Astrophysical stochastic gravitational wave background
    Pacheco, Jose Antonio de Freitas
    ASTRONOMISCHE NACHRICHTEN, 2019, 340 (9-10) : 945 - 951