Multivariate cubic spline smoothing in multiple prediction

被引:3
|
作者
Khamis, H [1 ]
Kepler, M
机构
[1] Uppsala Univ, Inst Informat Vetenskap, Uppsala, Sweden
[2] Wright State Univ, Comp & Telecommun Serv, Ctr Stat Consulting, Dayton, OH 45435 USA
关键词
multiple linear regression; Cholesky factorization; orthonormalization; cubic splines; prediction;
D O I
10.1016/S0169-2607(01)00114-6
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Given longitudinal data for several variables, including a given outcome variable, it is desired to predict the outcome for a specific individual, or more generally experimental unit, in such a way that the predicted value is both accurate and resistant (i.e. has good cross-validation). There are certain data-analytic difficulties associated with long-term multivariate longitudinal data that must be overcome in the prediction process. This paper provides a program written in the Statistical Analysis System (SAS) programming language, based generally on the Roche-Wainer-Thissen stature prediction model, that enables the researcher to overcome these difficulties. (C) 2002 Elsevier Science Ireland Ltd. All rights reserved.
引用
收藏
页码:131 / 136
页数:6
相关论文
共 50 条
  • [1] KALMAN FILTER OPTIMIZED CUBIC SPLINE FUNCTIONS FOR DIGITAL SMOOTHING
    CATALDI, TRI
    ROTUNNO, T
    ANALYTICAL METHODS AND INSTRUMENTATION, 1995, 2 (01): : 27 - 34
  • [2] SOH Estimation and SOC Recalibration of Lithium-Ion Battery with Incremental Capacity Analysis & Cubic Smoothing Spline
    Lin, C. P.
    Cabrera, J.
    Yu, Denis Y. W.
    Yang, F.
    Tsui, K. L.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (09)
  • [3] A REINTERPRETATION OF EMD BY CUBIC SPLINE INTERPOLATION
    Park, Minjeong
    Kim, Donghoh
    Oh, Hee-Seok
    ADVANCES IN DATA SCIENCE AND ADAPTIVE ANALYSIS, 2011, 3 (04) : 527 - 540
  • [4] Spline smoothing in small area trend estimation and forecasting
    Ugarte, M. D.
    Goicoa, T.
    Militino, A. F.
    Durban, M.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2009, 53 (10) : 3616 - 3629
  • [5] WHICH CUBIC SPLINE SHOULD ONE USE
    BEATSON, RK
    CHACKO, E
    SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1992, 13 (04): : 1009 - 1024
  • [6] Identification of Hammerstein models with cubic spline nonlinearities
    Dempsey, EJ
    Westwick, DT
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2004, 51 (02) : 237 - 245
  • [7] Properties of optimal polynomial designs under smoothing spline models
    Butler, NA
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2001, 92 (1-2) : 259 - 266
  • [8] Modified nodal cubic spline collocation for biharmonic equations
    Abeer Ali Abushama
    Bernard Bialecki
    Numerical Algorithms, 2006, 43 : 331 - 353
  • [9] Modified nodal cubic spline collocation for biharmonic equations
    Abushama, Abeer Ali
    Bialecki, Bernard
    NUMERICAL ALGORITHMS, 2006, 43 (04) : 331 - 353
  • [10] Modified nodal cubic spline collocation for elliptic equations
    Bialecki, Bernard
    Wang, Zhongben
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2012, 28 (06) : 1817 - 1839