Non-relativistic Quantum Theory at Finite Temperature

被引:0
|
作者
Wu, Xiang-Yao [1 ]
Zhang, Si-Qi [1 ]
Zhang, Bo-Jun [1 ]
Liu, Xiao-Jing [1 ]
Wang, Jing [1 ]
Li, Hong [1 ]
Ba, Nou [1 ]
Xiao, Li [1 ]
Wu, Yi-Heng [2 ]
Li, Jing-Wu [3 ]
机构
[1] Jilin Normal Univ, Inst Phys, Siping 136000, Peoples R China
[2] Jilin Univ, Inst Phys, Changchun 130012, Peoples R China
[3] Xuzhou Normal Univ, Inst Phys, Xuzhou 221000, Peoples R China
关键词
Finite temperature; Quantum theory; WAVE MECHANICS; BEHAVIOR; GAUGE;
D O I
10.1007/s10773-013-1547-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose the non-relativistic finite temperature quantum wave equations for a single particle and multiple particles. We give the relation between energy eigenvalues, eigenfunctions, transition frequency and temperature, and obtain some results: (1) when the degeneracies of two energy levels are same, the transition frequency between the two energy levels is unchanged when the temperature is changed. (2) When the degeneracies of two energy levels are different, the variance of transition frequency at two energy levels is direct proportion to temperature difference.
引用
收藏
页码:2599 / 2606
页数:8
相关论文
共 50 条
  • [21] Finite temperature matrix theory
    Meana, ML
    Osorio, MAR
    Penalba, JP
    NUCLEAR PHYSICS B, 1998, 531 (1-3) : 613 - 640
  • [22] Finite-temperature quantum billiards
    Salomov, UR
    Matrasulov, DU
    Khanna, FC
    Milibaeva, GM
    NON-LINEAR DYNAMICS AND FUNDAMENTAL INTERACTIONS, 2006, 213 : 167 - +
  • [23] Finite Mathematics, Finite Quantum Theory and a Conjecture on the Nature of Time
    F. M. Lev
    Physics of Particles and Nuclei, 2019, 50 : 443 - 469
  • [24] Finite Mathematics, Finite Quantum Theory and a Conjecture on the Nature of Time
    Lev, F. M.
    PHYSICS OF PARTICLES AND NUCLEI, 2019, 50 (04) : 443 - 469
  • [25] Non-relativistic quark model under external magnetic and Aharanov-Bohm (AB) fields in the presence of temperature-dependent confined Cornell potential
    Abu-Shady, M.
    Edet, C. O.
    Ikot, A. N.
    CANADIAN JOURNAL OF PHYSICS, 2021, 99 (11) : 1024 - 1031
  • [26] Quantized gravitoelectromagnetism theory at finite temperature
    Santos, A. F.
    Khanna, Faqir C.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2016, 31 (20-21):
  • [27] Integer quantum hall effect at finite temperature
    Toyoda, T.
    Kaneko, K.
    Suwa, F.
    Mitani, T.
    Ito, K.
    Koizumi, H.
    FLOW DYNAMICS, 2006, 832 : 524 - +
  • [28] Non-relativistic limit of thermodynamics of Bose field in a static space-time and Bose-Einstein condensation
    Akant, Levent
    Debir, Birses
    Iseri, I. Cagri
    CLASSICAL AND QUANTUM GRAVITY, 2018, 35 (04)
  • [29] Global-in-time error estimates of non-relativistic limits for Euler-Maxwell system near non-constant equilibrium
    Li, Yachun
    Lu, Peng
    Zhao, Liang
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2024, 80
  • [30] Second Quantization of the Stueckelberg Relativistic Quantum Theory and Associated Gauge Fields
    L. P. Horwitz
    N. Shnerb
    Foundations of Physics, 1998, 28 : 1509 - 1519