HYPERGEOMETRIC BERNOULLI POLYNOMIALS AND APPELL SEQUENCES

被引:42
|
作者
Hassen, Abdul [1 ]
Nguyen, Hieu D. [1 ]
机构
[1] Rowan Univ, Dept Math, Glassboro, NJ 08028 USA
关键词
Bernoulli polynomials; Appell sequences; confluent hypergeometric series;
D O I
10.1142/S1793042108001754
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
There are two analytic approaches to Bernoulli polynomials B-n(x): either by way of the generating function ze(xz)/(e(z)-1) = Sigma B-n(x)z(n)/n! or as an Appell sequence with zero mean. In this article, we discuss a generalization of Bernoulli polynomials defined by the generating function z(N)e(xz)/(e(z) - TN-1(z)), where T-N(z) denotes the Nth Maclaurin polynomial of e(z), and establish an equivalent definition in terms of Appell sequences with zero moments in complete analogy to their classical counterpart. The zero-moment condition is further shown to generalize to Bernoulli polynomials generated by the confluent hypergeometric series.
引用
收藏
页码:767 / 774
页数:8
相关论文
共 50 条
  • [31] MONOTONICITY OF RATIOS OF BERNOULLI POLYNOMIALS
    Pinelis, Iosif
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2024, 27 (04): : 949 - 953
  • [32] On multiple zeros of Bernoulli polynomials
    Dilcher, Karl
    ACTA ARITHMETICA, 2008, 134 (02) : 149 - 155
  • [33] A New Formula for the Bernoulli Polynomials
    István Mező
    Results in Mathematics, 2010, 58 : 329 - 335
  • [34] A note on the Bernoulli and Euler polynomials
    Cheon, GS
    APPLIED MATHEMATICS LETTERS, 2003, 16 (03) : 365 - 368
  • [35] Shifted Appell Sequences in Clifford Analysis
    Pena, Dixan Pena
    RESULTS IN MATHEMATICS, 2013, 63 (3-4) : 1145 - 1157
  • [36] Integrals of products of Bernoulli polynomials
    Agoh, Takashi
    Dilcher, Karl
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 381 (01) : 10 - 16
  • [37] A New Formula for the Bernoulli Polynomials
    Mezo, Istvan
    RESULTS IN MATHEMATICS, 2010, 58 (3-4) : 329 - 335
  • [38] Triple convolution identities on Bernoulli polynomials and Euler polynomials
    Wang, Weiping
    Liu, Hongmei
    Jia, Cangzhi
    UTILITAS MATHEMATICA, 2016, 101 : 369 - 395
  • [39] Bernoulli F-polynomials and Fibo-Bernoulli matrices
    Kus, Semra
    Tuglu, Naim
    Kim, Taekyun
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (1)
  • [40] HYPERGEOMETRIC POLYNOMIALS AND NUMBERS OF HIGHER ORDER
    Hassen, Abdul
    Drissi, Driss
    Hammett, Emily
    Ulrich, Quyn
    HOUSTON JOURNAL OF MATHEMATICS, 2022, 48 (02): : 369 - 394