HYPERGEOMETRIC BERNOULLI POLYNOMIALS AND APPELL SEQUENCES

被引:42
|
作者
Hassen, Abdul [1 ]
Nguyen, Hieu D. [1 ]
机构
[1] Rowan Univ, Dept Math, Glassboro, NJ 08028 USA
关键词
Bernoulli polynomials; Appell sequences; confluent hypergeometric series;
D O I
10.1142/S1793042108001754
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
There are two analytic approaches to Bernoulli polynomials B-n(x): either by way of the generating function ze(xz)/(e(z)-1) = Sigma B-n(x)z(n)/n! or as an Appell sequence with zero mean. In this article, we discuss a generalization of Bernoulli polynomials defined by the generating function z(N)e(xz)/(e(z) - TN-1(z)), where T-N(z) denotes the Nth Maclaurin polynomial of e(z), and establish an equivalent definition in terms of Appell sequences with zero moments in complete analogy to their classical counterpart. The zero-moment condition is further shown to generalize to Bernoulli polynomials generated by the confluent hypergeometric series.
引用
收藏
页码:767 / 774
页数:8
相关论文
共 50 条
  • [21] Some Appell–Dunkl Sequences
    Judit Mínguez Ceniceros
    Bulletin of the Malaysian Mathematical Sciences Society, 2023, 46
  • [22] On the analogue of Bernoulli polynomials
    Ryoo, Cheon Seoung
    Rim, Seog-Hoon
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2008, 10 (02) : 163 - 172
  • [23] A note on Appell sequences, Mellin transforms and Fourier series
    Navas, Luis M.
    Ruiz, Francisco J.
    Varona, Juan L.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 476 (02) : 836 - 850
  • [24] An identity on pairs of Appell-type polynomials
    Mihoubi, Miloud
    Saidi, Yamina
    COMPTES RENDUS MATHEMATIQUE, 2015, 353 (09) : 773 - 778
  • [25] Bernoulli F-polynomials and Fibo–Bernoulli matrices
    Semra Kuş
    Naim Tuglu
    Taekyun Kim
    Advances in Difference Equations, 2019
  • [26] Shifted Appell Sequences in Clifford Analysis
    Dixan Peña Peña
    Results in Mathematics, 2013, 63 : 1145 - 1157
  • [27] Some Appell-Dunkl Sequences
    Ceniceros, Judit Minguez
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2023, 46 (02)
  • [28] Diophantine equations and Bernoulli polynomials
    Bilu, YF
    Brindza, B
    Kirschenhofer, P
    Pintér, A
    Tichy, RF
    Schinzel, A
    COMPOSITIO MATHEMATICA, 2002, 131 (02) : 173 - 188
  • [29] On the Apostol-Bernoulli Polynomials
    Luo, Qiu-Ming
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2004, 2 (04): : 509 - 515
  • [30] Algorithms for Bernoulli and Related Polynomials
    Dil, Ayhan
    Kurt, Veli
    Cenkci, Mehmet
    JOURNAL OF INTEGER SEQUENCES, 2007, 10 (05)