An input-output hidden Markov model for tree transductions

被引:11
作者
Bacciu, Davide [1 ]
Micheli, Alessio [1 ]
Sperduti, Alessandro [2 ]
机构
[1] Univ Pisa, Dipartimento Informat, I-56100 Pisa, Italy
[2] Univ Padua, Dipartimento Matemat, I-35100 Padua, Italy
关键词
Bottom-up hidden tree Markov model; Input-driven generative model; Learning tree transductions; Structured data processing; GENERAL FRAMEWORK; STRUCTURED DATA; EDIT DISTANCE;
D O I
10.1016/j.neucom.2012.12.044
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The paper introduces an input-driven generative model for tree-structured data that extends the bottom-up hidden tree Markov model to non-homogeneous state transition and emission probabilities. We show how the proposed input-driven approach can be used to realize different types of structured transductions between trees. A thorough experimental analysis is proposed to investigate the advantage of introducing an input-driven dynamics in structured-data processing. The results of this analysis suggest that input-driven models can capture more discriminative structural information than homogeneous approaches in computational learning tasks, including document classification and more general substructure categorization. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:34 / 46
页数:13
相关论文
共 33 条
[21]   Visualization of tree-structured data through generative topographic mapping [J].
Gianniotis, Nikolaos ;
Tino, Peter .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2008, 19 (08) :1468-1493
[22]   Modeling and forecasting electricity prices with input/output hidden Markov models [J].
González, AM ;
San Roque, AM ;
García-González, J .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2005, 20 (01) :13-24
[23]   Recursive self-organizing network models [J].
Hammer, B ;
Micheli, A ;
Sperduti, A ;
Strickert, M .
NEURAL NETWORKS, 2004, 17 (8-9) :1061-1085
[24]   A general framework for unsupervised processing of structured data [J].
Hammer, B ;
Micheli, A ;
Sperduti, A ;
Strickert, M .
NEUROCOMPUTING, 2004, 57 :3-35
[25]  
Knab B, 2003, ST CLASS DAT ANAL, P561
[26]   Learning dynamic audio-visual mapping with input-output hidden Markov models [J].
Li, Yan ;
Shum, Heung-Yeung .
IEEE TRANSACTIONS ON MULTIMEDIA, 2006, 8 (03) :542-549
[27]  
Moschitti A, 2006, LECT NOTES COMPUT SC, V4212, P318
[28]  
Nicotra L, 2009, ARTIF INTELL MED, P125
[29]   A TUTORIAL ON HIDDEN MARKOV-MODELS AND SELECTED APPLICATIONS IN SPEECH RECOGNITION [J].
RABINER, LR .
PROCEEDINGS OF THE IEEE, 1989, 77 (02) :257-286
[30]   Exploiting prior knowledge and gene distances in the analysis of tumor expression profiles with extended Hidden Markov Models [J].
Seifert, Michael ;
Strickert, Marc ;
Schliep, Alexander ;
Grosse, Ivo .
BIOINFORMATICS, 2011, 27 (12) :1645-1652