An input-output hidden Markov model for tree transductions

被引:11
作者
Bacciu, Davide [1 ]
Micheli, Alessio [1 ]
Sperduti, Alessandro [2 ]
机构
[1] Univ Pisa, Dipartimento Informat, I-56100 Pisa, Italy
[2] Univ Padua, Dipartimento Matemat, I-35100 Padua, Italy
关键词
Bottom-up hidden tree Markov model; Input-driven generative model; Learning tree transductions; Structured data processing; GENERAL FRAMEWORK; STRUCTURED DATA; EDIT DISTANCE;
D O I
10.1016/j.neucom.2012.12.044
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The paper introduces an input-driven generative model for tree-structured data that extends the bottom-up hidden tree Markov model to non-homogeneous state transition and emission probabilities. We show how the proposed input-driven approach can be used to realize different types of structured transductions between trees. A thorough experimental analysis is proposed to investigate the advantage of introducing an input-driven dynamics in structured-data processing. The results of this analysis suggest that input-driven models can capture more discriminative structural information than homogeneous approaches in computational learning tasks, including document classification and more general substructure categorization. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:34 / 46
页数:13
相关论文
共 33 条
[1]   Learning Nonsparse Kernels by Self-Organizing Maps for Structured Data [J].
Aiolli, Fabio ;
Da San Martino, Giovanni ;
Hagenbuchner, Markus ;
Sperduti, Alessandro .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2009, 20 (12) :1938-1949
[2]   Exact algorithms for computing the tree edit distance between unordered trees [J].
Akutsu, Tatsuya ;
Fukagawa, Daiji ;
Takasu, Atsuhiro ;
Tamura, Takeyuki .
THEORETICAL COMPUTER SCIENCE, 2011, 412 (4-5) :352-364
[3]  
[Anonymous], 2003, SIGKDD Explorations, DOI DOI 10.1145/959242.959248
[4]  
[Anonymous], 2007, SIGIR FORUM
[5]  
Bacciu D., P 20 EUR S ART NEUR, P25
[6]   Compositional Generative Mapping for Tree-Structured Data-Part II: Topographic Projection Model [J].
Bacciu, Davide ;
Micheli, Alessio ;
Sperduti, Alessandro .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2013, 24 (02) :231-247
[7]   Compositional Generative Mapping for Tree-Structured Data-Part I: Bottom-Up Probabilistic Modeling of Trees [J].
Bacciu, Davide ;
Micheli, Alessio ;
Sperduti, Alessandro .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2012, 23 (12) :1987-2002
[8]  
Bacciu D, 2010, LECT NOTES COMPUT SC, V6443, P660, DOI 10.1007/978-3-642-17537-4_80
[9]   A MAXIMIZATION TECHNIQUE OCCURRING IN STATISTICAL ANALYSIS OF PROBABILISTIC FUNCTIONS OF MARKOV CHAINS [J].
BAUM, LE ;
PETRIE, T ;
SOULES, G ;
WEISS, N .
ANNALS OF MATHEMATICAL STATISTICS, 1970, 41 (01) :164-&
[10]   Experiments on the application of IOHMMs to model financial returns series [J].
Bengio, Y ;
Lauzon, VP ;
Ducharme, R .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2001, 12 (01) :113-123