An imConvNet-based deep learning model for Chinese medical named entity recognition

被引:4
|
作者
Zheng, Yuchen [1 ]
Han, Zhenggong [2 ]
Cai, Yimin [1 ]
Duan, Xubo [1 ]
Sun, Jiangling [3 ]
Yang, Wei [1 ]
Huang, Haisong [2 ]
机构
[1] Guizhou Univ, Med Coll, Guiyang 550025, Guizhou, Peoples R China
[2] Guizhou Univ, Key Lab Adv Mfg Technol, Minist Educ, Guiyang 550025, Guizhou, Peoples R China
[3] Guiyang Hosp Stomatol, Guiyang 550002, Guizhou, Peoples R China
关键词
Named entity recognition; Convolutional neural network; Chinese electronic medical records; BiLSTM-CRF; BERT; BIG DATA; HEALTH; CARE;
D O I
10.1186/s12911-022-02049-4
中图分类号
R-058 [];
学科分类号
摘要
Background With the development of current medical technology, information management becomes perfect in the medical field. Medical big data analysis is based on a large amount of medical and health data stored in the electronic medical system, such as electronic medical records and medical reports. How to fully exploit the resources of information included in these medical data has always been the subject of research by many scholars. The basis for text mining is named entity recognition (NER), which has its particularities in the medical field, where issues such as inadequate text resources and a large number of professional domain terms continue to face significant challenges in medical NER. Methods We improved the convolutional neural network model (imConvNet) to obtain additional text features. Concurrently, we continue to use the classical Bert pre-training model and BiLSTM model for named entity recognition. We use imConvNet model to extract additional word vector features and improve named entity recognition accuracy. The proposed model, named BERT-imConvNet-BiLSTM-CRF, is composed of four layers: BERT embedding layer-getting word embedding vector; imConvNet layer-capturing the context feature of each character; BiLSTM (Bidirectional Long Short-Term Memory) layer-capturing the long-distance dependencies; CRF (Conditional Random Field) layer-labeling characters based on their features and transfer rules. Results The average F1 score on the public medical data set yidu-s4k reached 91.38% when combined with the classical model; when real electronic medical record text in impacted wisdom teeth is used as the experimental object, the model's F1 score is 93.89%. They all show better results than classical models. Conclusions The suggested novel model (imConvNet) significantly improves the recognition accuracy of Chinese medical named entities and applies to various medical corpora.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] An imConvNet-based deep learning model for Chinese medical named entity recognition
    Yuchen Zheng
    Zhenggong Han
    Yimin Cai
    Xubo Duan
    Jiangling Sun
    Wei Yang
    Haisong Huang
    BMC Medical Informatics and Decision Making, 22
  • [2] An attention-based deep learning model for clinical named entity recognition of Chinese electronic medical records
    Luqi Li
    Jie Zhao
    Li Hou
    Yunkai Zhai
    Jinming Shi
    Fangfang Cui
    BMC Medical Informatics and Decision Making, 19
  • [3] An attention-based deep learning model for clinical named entity recognition of Chinese electronic medical records
    Li, Luqi
    Zhao, Jie
    Hou, Li
    Zhai, Yunkai
    Shi, Jinming
    Cui, Fangfang
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2019, 19 (01)
  • [4] Named Entity Recognition for Chinese Electronic Medical Records Based on Multitask and Transfer Learning
    Guo, Wenming
    Lu, Junda
    Han, Fang
    IEEE ACCESS, 2022, 10 : 77375 - 77382
  • [5] Named entity recognition based on deep learning
    Ji Z.
    Kong D.
    Liu W.
    Dong W.
    Sang Y.
    Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 2022, 28 (06): : 1603 - 1615
  • [6] A Hybrid Model for Named Entity Recognition on Chinese Electronic Medical Records
    Wang, Yu
    Sun, Yining
    Ma, Zuchang
    Gao, Lisheng
    Xu, Yang
    ACM TRANSACTIONS ON ASIAN AND LOW-RESOURCE LANGUAGE INFORMATION PROCESSING, 2021, 20 (02)
  • [7] Chinese mineral named entity recognition based on BERT model
    Yu, Yuqing
    Wang, Yuzhu
    Mua, Jingqin
    Li, Wei
    Jiao, Shoutao
    Wang, Zhenhua
    Lv, Pengfei
    Zhu, Yueqin
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 206
  • [8] A Multiclass Classification Method Based on Deep Learning for Named Entity Recognition in Electronic Medical Records
    Dong, Xishuang
    Qian, Lijun
    Guan, Yi
    Huang, Lei
    Yu, Qiubin
    Yang, Jinfeng
    2016 NEW YORK SCIENTIFIC DATA SUMMIT (NYSDS), 2016,
  • [9] A Deep Learning Solution to Named Entity Recognition
    Murthy, V. Rudra
    Bhattacharyya, Pushpak
    COMPUTATIONAL LINGUISTICS AND INTELLIGENT TEXT PROCESSING, (CICLING 2016), PT I, 2018, 9623 : 427 - 438
  • [10] Deep adaptation of CNN in Chinese named entity recognition
    Lv, Yana
    Qin, Xutong
    Du, Xiuli
    Qiu, Shaoming
    ENGINEERING REPORTS, 2023, 5 (06)