Differentiable strong lensing: uniting gravity and neural nets through differentiable probabilistic programming

被引:27
作者
Chianese, Marco [1 ,2 ]
Coogan, Adam [1 ,2 ]
Hofma, Paul [1 ,2 ]
Otten, Sydney [1 ,2 ,3 ]
Weniger, Christoph [1 ,2 ]
机构
[1] Univ Amsterdam, Gravitat Astroparticle Phys Amsterdam GRAPPA, Inst Theoret Phys Amsterdam, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands
[2] Univ Amsterdam, Delta Inst Theoret Phys, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands
[3] Radboud Univ Nijmegen, Inst Math Astrophys & Particle Phys IMAPP, Heyendaalseweg 135, NL-6525 AJ Nijmegen, Netherlands
关键词
gravitational lensing: strong; galaxies: structure; dark matter; STRONG GRAVITATIONAL LENSES; DARK-MATTER; MASS; SUBSTRUCTURE; GALAXY; COSMOS;
D O I
10.1093/mnras/staa1477
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Since upcoming telescopes will observe thousands of strong lensing systems, creating fully automated analysis pipelines for these images becomes increasingly important. In this work, we make a step towards that direction by developing the first end-to-end differentiable strong lensing pipeline. Our approach leverages and combines three important computer science developments: (i) convolutional neural networks (CNNs), (ii) efficient gradient-based sampling techniques, and (iii) deep probabilistic programming languages. The latter automatize parameter inference and enable the combination of generative deep neural networks and physics components in a single model. In the current work, we demonstrate that it is possible to combine a CNN trained on galaxy images as a source model with a fully differentiable and exact implementation of gravitational lensing physics in a single probabilistic model. This does away with hyperparameter tuning for the source model, enables the simultaneous optimization of nearly 100 source and lens parameters with gradient-based methods, and allows the use of efficient gradient-based posterior sampling techniques. These features make this automated inference pipeline potentially suitable for processing a large amount of data. By analysing mock lensing systems with different signal-to-noise ratios, we show that lensing parameters are reconstructed with percent-level accuracy. More generally, we consider this work as one of the first steps in establishing differentiable probabilistic programming techniques in the particle astrophysics community, which have the potential to significantly accelerate and improve many complex data analysis tasks.
引用
收藏
页码:381 / 393
页数:13
相关论文
共 117 条
[1]   The Dark Energy Survey: more than dark energy - an overview [J].
Abbott, T. ;
Abdalla, F. B. ;
Aleksic, J. ;
Allam, S. ;
Amara, A. ;
Bacon, D. ;
Balbinot, E. ;
Banerji, M. ;
Bechtol, K. ;
Benoit-Levy, A. ;
Bernstein, G. M. ;
Bertin, E. ;
Blazek, J. ;
Bonnett, C. ;
Bridle, S. ;
Brooks, D. ;
Brunner, R. J. ;
Buckley-Geer, E. ;
Burke, D. L. ;
Caminha, G. B. ;
Capozzi, D. ;
Carlsen, J. ;
Carnero-Rosell, A. ;
Carollo, M. ;
Carrasco-Kind, M. ;
Carretero, J. ;
Castander, F. J. ;
Clerkin, L. ;
Collett, T. ;
Conselice, C. ;
Crocce, M. ;
Cunha, C. E. ;
D'Andrea, C. B. ;
da Costa, L. N. ;
Davis, T. M. ;
Desai, S. ;
Diehl, H. T. ;
Dietrich, J. P. ;
Dodelson, S. ;
Doel, P. ;
Drlica-Wagner, A. ;
Estrada, J. ;
Etherington, J. ;
Evrard, A. E. ;
Fabbri, J. ;
Finley, D. A. ;
Flaugher, B. ;
Foley, R. J. ;
Fosalba, P. ;
Frieman, J. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 460 (02) :1270-1299
[2]  
Alemi AA, 2017, ARXIV171100464
[3]  
Alexander S., 2019, APJ, V893, P15
[4]  
[Anonymous], 2010, ARXIV10010061
[5]  
[Anonymous], 2009, ARXIV09120201 LSST S
[6]  
[Anonymous], 2018, INT C ARTIFICIAL INT, DOI DOI 10.17863/CAM.42246
[7]  
[Anonymous], 2017, APJ, DOI DOI 10.3847/2041-8213/AA9704
[8]  
[Anonymous], 2015, CoRR abs/ 1502. 05767
[9]  
[Anonymous], 2017, ARXIV170307027
[10]  
[Anonymous], 2019, APJ, DOI DOI 10.3847/1538-4357/AB4C41