EQUIDISTRIBUTION RESULTS FOR SINGULAR METRICS ON LINE BUNDLES

被引:1
作者
Coman, Dan [1 ]
Marinescu, George [2 ,3 ]
机构
[1] Syracuse Univ, Dept Math, Syracuse, NY 13244 USA
[2] Univ Cologne, Inst Math, D-50931 Cologne, Germany
[3] Romanian Acad, Inst Math Simion Stoilow, Bucharest, Romania
来源
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE | 2015年 / 48卷 / 03期
基金
美国国家科学基金会;
关键词
GENERALIZED BERGMAN KERNELS; MASS EQUIDISTRIBUTION; COMPLEX-MANIFOLDS; RANDOM ZEROS; DEFINITION; CURRENTS; SECTIONS; THEOREM; ENERGY; ASYMPTOTICS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (L, h) be a holomorphic line bundle with a positively curved singular Hermitian metric over a complex manifold X. One can define naturally the sequence of Fubini-Study currents gamma p associated to the space of L-2-holomorphic sections of L-circle times p. Assuming that the singular set of the metric is contained in a compact analytic subset Sigma of X and that the logarithm of the Bergman density function of L-circle times p\(X\Sigma) grows like o(p) as p -> infinity, we prove the following: 1) the currents converge gamma(k)(p) weakly on the whole X to c(1) (L, h)(k), where c(1) (L, h) is the curvature current of h. 2) the expectations of the common zeros of a random k-tuple of L-2-holomorphic sections converge weakly in the sense of currents to c(1) (L,h)(k). Here k is so that codim Sigma >= k. Our weak asymptotic condition on the Bergman density function is known to hold in many cases, as it is a consequence of its asymptotic expansion. We also prove it here in a quite general setting. We then show that many important geometric situations (singular metrics on big line bundles, Kahler-Einstein metrics on Zariski-open sets, arithmetic quotients) fit into our framework.
引用
收藏
页码:497 / 536
页数:40
相关论文
共 50 条
  • [41] Generalised Kostka-Foulkes polynomials and cohomology of line bundles on homogeneous vector bundles
    Panyushev, Dmitri I.
    SELECTA MATHEMATICA-NEW SERIES, 2010, 16 (02): : 315 - 342
  • [42] Bergman Kernel Asymptotics for Singular Metrics on Punctured Riemann Surfaces
    Coman, Dan
    Klevtsov, Semyon
    Marinescu, George
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2019, 68 (02) : 593 - 628
  • [43] L2 Extensions with Singular Metrics on Kahler Manifolds
    Zhou, Xiangyu
    Zhu, Langfeng
    ACTA MATHEMATICA SCIENTIA, 2021, 41 (06) : 2021 - 2038
  • [44] HARMONIC SECTIONS OF TANGENT BUNDLES EQUIPPED WITH RIEMANNIAN g-NATURAL METRICS
    Abbassi, M. T. K.
    Calvaruso, G.
    Perrone, D.
    QUARTERLY JOURNAL OF MATHEMATICS, 2011, 62 (02) : 259 - 288
  • [45] ASYMPTOTICS OF THE BERGMAN FUNCTION FOR SEMIPOSITIVE HOLOMORPHIC LINE BUNDLES
    Cho, Koji
    Kamimoto, Joe
    Nose, Toshihiro
    KYUSHU JOURNAL OF MATHEMATICS, 2011, 65 (02) : 349 - 382
  • [46] Line bundles on non-primary Hopf manifolds
    Weiming Liu
    Xiangyu Zhou
    Science in China Series A: Mathematics, 2004, 47 : 538 - 551
  • [47] Line bundles on non-primary Hopf manifolds
    Liu, WM
    Zhou, XY
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2004, 47 (04): : 538 - 551
  • [48] Line bundles on non-primary Hopf manifolds
    LIU Weiming & ZHOU XiangyuInstitute of Mathematics
    Department of Mathematics
    Science China Mathematics, 2004, (04) : 538 - 551
  • [49] Blow-up of waves on singular spacetimes with generic spatial metrics
    Fajman, David
    Urban, Liam
    LETTERS IN MATHEMATICAL PHYSICS, 2022, 112 (02)
  • [50] Effective Very Ampleness of the Canonical Line Bundles on Ball Quotients
    Wang, Xu
    JOURNAL OF GEOMETRIC ANALYSIS, 2015, 25 (02) : 740 - 760