The tricomi problem for the Shimizu-Morioka dynamical system

被引:33
|
作者
Leonov, G. A. [1 ]
机构
[1] St Petersburg State Univ, St Petersburg 199034, Russia
关键词
Saddle Point; Unstable Manifold; DOKLADY Mathematic; Stable Manifold; Modern Interpretation;
D O I
10.1134/S1064562412060324
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:850 / 853
页数:4
相关论文
共 50 条
  • [1] The tricomi problem for the Shimizu-Morioka dynamical system
    G. A. Leonov
    Doklady Mathematics, 2012, 86 : 850 - 853
  • [2] The Hopf bifurcation in the Shimizu-Morioka system
    Llibre, Jaume
    Pessoa, Claudio
    NONLINEAR DYNAMICS, 2015, 79 (03) : 2197 - 2205
  • [3] Integrability analysis of the Shimizu-Morioka system
    Huang, Kaiyin
    Shi, Shaoyun
    Li, Wenlei
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2020, 84
  • [4] Stability, Synchronization Control and Numerical Solution of Fractional Shimizu-Morioka Dynamical System
    Akinlar, Mehmet Ali
    Secer, Aydin
    Bayram, Mustafa
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2014, 8 (04): : 1699 - 1705
  • [5] Dynamic characteristics analysis of the Shimizu-Morioka chaotic system
    Shi, Wenxin
    Jia, Hongyan
    PROCEEDINGS OF THE 2020 INTERNATIONAL CONFERENCE ON ARTIFICIAL LIFE AND ROBOTICS (ICAROB2020), 2020, : 813 - 816
  • [6] Dynamics at infinity and other global dynamical aspects of Shimizu-Morioka equations
    Messias, Marcelo
    Alves Gouveia, Marcio R.
    Pessoa, Claudio
    NONLINEAR DYNAMICS, 2012, 69 (1-2) : 577 - 587
  • [7] On hyperbolic attractors in a modified complex Shimizu-Morioka system
    Kruglov, Vyacheslav
    Sataev, Igor
    CHAOS, 2023, 33 (06)
  • [8] Chaos in the Shimizu-Morioka Model With Fractional Order
    Wei, Zhangzhi
    Zhang, Xin
    FRONTIERS IN PHYSICS, 2021, 9 (09):
  • [9] CONDITIONS FOR APPEARANCE AND DISAPPEARANCE OF LIMIT CYCLES IN THE SHIMIZU-MORIOKA SYSTEM
    Liu, Lingling
    Gao, Bo
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2011, 21 (09): : 2489 - 2503
  • [10] ON BIFURCATIONS OF THE LORENZ ATTRACTOR IN THE SHIMIZU-MORIOKA MODEL
    SHILNIKOV, AL
    PHYSICA D, 1993, 62 (1-4): : 338 - 346