TRAVELING FRONTS OF PYRAMIDAL SHAPES IN COMPETITION-DIFFUSION SYSTEMS

被引:40
作者
Ni, Wei-Ming [1 ,2 ]
Taniguchi, Masaharu [3 ]
机构
[1] E China Normal Univ, Ctr Partial Differential Equat, Shanghai 200241, Peoples R China
[2] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
[3] Tokyo Inst Technol, Dept Math & Comp Sci, Meguro Ku, Tokyo 1528552, Japan
基金
日本学术振兴会;
关键词
Traveling front; pyramidal shapes; competition-diffusion system; CURVED FRONTS; GLOBAL STABILITY; EXISTENCE; WAVES;
D O I
10.3934/nhm.2013.8.379
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is well known that a competition-diffusion system has a one-dimensional traveling front. This paper studies traveling front solutions of pyramidal shapes in a competition-diffusion system in R-N with N >= 2. By using a multi-scale method, we construct a suitable pair of a supersolution and a subsolution, and find a pyramidal traveling front solution between them.
引用
收藏
页码:379 / 395
页数:17
相关论文
共 18 条
[1]   The Minimal Speed of Traveling Fronts for the Lotka-Volterra Competition System [J].
Guo, Jong-Shenq ;
Liang, Xing .
JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2011, 23 (02) :353-363
[2]  
Hale JK., 1969, ORDINARY DIFFERENTIA
[3]  
Hamel F, 2006, DISCRETE CONT DYN-A, V14, P75
[4]  
Hamel F, 2005, DISCRETE CONT DYN-A, V13, P1069
[5]   Corner defects in almost planar interface propagation [J].
Haragus, M ;
Scheel, A .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2006, 23 (03) :283-329
[6]  
Hosono Y, 2003, DISCRETE CONT DYN-B, V3, P79
[7]  
Kan-On Y., 1996, Jpn. J. Ind. Appl. Math, V13, P343, DOI DOI 10.1007/BF03167252
[9]  
Kurokawa Y., 2011, P ROY SOC EDINB A, V141, P1031
[10]  
Ninomiya H, 2006, DISCRETE CONT DYN-A, V15, P819