Staggered ladder spectra

被引:36
作者
Arvedson, E [1 ]
Wilkinson, M
Mehlig, B
Nakamura, K
机构
[1] Chalmers Univ Technol, Dept Phys, S-41296 Gothenburg, Sweden
[2] Open Univ, Fac Math & Comp, Milton Keynes MK7 6AA, Bucks, England
[3] Osaka City Univ, Dept Appl Phys, Sumiyoshi Ku, Osaka 5588585, Japan
关键词
D O I
10.1103/PhysRevLett.96.030601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We exactly solve a Fokker-Planck equation by determining its eigenvalues and eigenfunctions: we construct nonlinear second-order differential operators which act as raising and lowering operators, generating ladder spectra for the odd- and even-parity states. The ladders are staggered: the odd-even separation differs from even-odd. The Fokker-Planck equation corresponds, in the limit of weak damping, to a generalized Ornstein-Uhlenbeck process where the random force depends upon position as well as time. The process describes damped stochastic acceleration, and exhibits anomalous diffusion at short times and a stationary non-Maxwellian momentum distribution.
引用
收藏
页数:4
相关论文
共 10 条
[1]  
ACHATZ U, 1991, ASTRON ASTROPHYS, V250, P266
[2]  
Dirac P. A. M., 1930, PRINCIPLES QUANTUM M
[3]  
Fermi E., 1949, Phys. Rev, V75, P1169, DOI [10.1103/PhysRev.75.1169, DOI 10.1103/PHYSREV.75.1169]
[4]   CLASSICAL AND QUANTUM SUPERDIFFUSION IN A TIME-DEPENDENT RANDOM POTENTIAL [J].
GOLUBOVIC, L ;
FENG, SC ;
ZENG, FA .
PHYSICAL REVIEW LETTERS, 1991, 67 (16) :2115-2118
[5]   THE FACTORIZATION METHOD [J].
INFELD, L ;
HULL, TE .
REVIEWS OF MODERN PHYSICS, 1951, 23 (01) :21-68
[6]   CLASSICAL AND QUANTUM SUPERDIFFUSION IN A TIME-DEPENDENT RANDOM POTENTIAL - COMMENT [J].
ROSENBLUTH, MN .
PHYSICAL REVIEW LETTERS, 1992, 69 (12) :1831-1831
[7]   On radial evolution of stochastic acceleration in a dissipative solar wind turbulence with spatially distributed sources [J].
Stawicki, O .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2004, 109 (A4)
[8]   STOCHASTIC ACCELERATION [J].
STURROCK, PA .
PHYSICAL REVIEW, 1966, 141 (01) :186-&
[9]   On the theory of the Brownian motion [J].
Uhlenbeck, GE ;
Ornstein, LS .
PHYSICAL REVIEW, 1930, 36 (05) :0823-0841
[10]  
Van Kampen N. G., 1992, STOCHASTIC PROCESSES