Drug-target interaction prediction using semi-bipartite graph model and deep learning

被引:40
|
作者
Eslami Manoochehri, Hafez [1 ]
Nourani, Mehrdad [1 ]
机构
[1] Univ Texas Dallas, Dept Elect & Comp Engn, 800 W Campbell Rd, Richardson, TX 75080 USA
关键词
Drug-target interaction; Link prediction; Deep learning; Weisfeiler-Lehman algorithm; INTERACTION NETWORKS; LINK PREDICTION; RANDOM-WALK; IDENTIFICATION; INTEGRATION; KERNELS;
D O I
10.1186/s12859-020-3518-6
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background Identifying drug-target interaction is a key element in drug discovery. In silico prediction of drug-target interaction can speed up the process of identifying unknown interactions between drugs and target proteins. In recent studies, handcrafted features, similarity metrics and machine learning methods have been proposed for predicting drug-target interactions. However, these methods cannot fully learn the underlying relations between drugs and targets. In this paper, we propose anew framework for drug-target interaction prediction that learns latent features from drug-target interaction network. Results We present a framework to utilize the network topology and identify interacting and non-interacting drug-target pairs. We model the problem as a semi-bipartite graph in which we are able to use drug-drug and protein-protein similarity in a drug-protein network. We have then used a graph labeling method for vertex ordering in our graph embedding process. Finally, we employed deep neural network to learn the complex pattern of interacting pairs from embedded graphs. We show our approach is able to learn sophisticated drug-target topological features and outperforms other state-of-the-art approaches. Conclusions The proposed learning model on semi-bipartite graph model, can integrate drug-drug and protein-protein similarities which are semantically different than drug-protein information in a drug-target interaction network. We show our model can determine interaction likelihood for each drug-target pair and outperform other heuristics.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] A novel method for drug-target interaction prediction based on graph transformers model
    Wang, Hongmei
    Guo, Fang
    Du, Mengyan
    Wang, Guishen
    Cao, Chen
    BMC BIOINFORMATICS, 2022, 23 (01)
  • [22] Drug-Target Interaction Prediction: End-to-End Deep Learning Approach
    Monteiro, Nelson R. C.
    Ribeiro, Bernardete
    Arrais, Joel P.
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2021, 18 (06) : 2364 - 2374
  • [23] Improved drug-target interaction prediction with intermolecular graph transformer
    Liu, Siyuan
    Wang, Yusong
    Deng, Yifan
    He, Liang
    Shao, Bin
    Yin, Jian
    Zheng, Nanning
    Liu, Tie-Yan
    Wang, Tong
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (05)
  • [24] GSL-DTI: Graph structure learning network for Drug-Target interaction prediction
    E, Zixuan
    Qiao, Guanyu
    Wang, Guohua
    Li, Yang
    METHODS, 2024, 223 : 136 - 145
  • [25] Drug-target interaction prediction using ensemble learning and dimensionality reduction
    Ezzat, Ali
    Wu, Min
    Li, Xiao-Li
    Kwoh, Chee-Keong
    METHODS, 2017, 129 : 81 - 88
  • [26] Heterogeneous Graph Attention Network for Drug-Target Interaction Prediction
    Li, Mei
    Cai, Xiangrui
    Li, Linyu
    Xu, Sihan
    Ji, Hua
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 1166 - 1176
  • [27] Drug-Target Interaction Prediction with Graph Regularized Matrix Factorization
    Ezzat, Ali
    Zhao, Peilin
    Wu, Min
    Li, Xiao-Li
    Kwoh, Chee-Keong
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2017, 14 (03) : 646 - 656
  • [28] A Label Extended Semi-supervised Learning Method for Drug-target Interaction Prediction
    Jie Zhao
    Zhi Cao
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON AUTOMATION, MECHANICAL CONTROL AND COMPUTATIONAL ENGINEERING, 2015, 124 : 1635 - 1640
  • [29] Prediction Drug-Target Interaction Networks Based on Semi-Supervised Learning Method
    Gu Quan
    Ding Yongsheng
    Zhang Tongliang
    Han Tao
    PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 7185 - 7188
  • [30] GSRF-DTI: a framework for drug-target interaction prediction based on a drug-target pair network and representation learning on a large graph
    Zhu, Yongdi
    Ning, Chunhui
    Zhang, Naiqian
    Wang, Mingyi
    Zhang, Yusen
    BMC BIOLOGY, 2024, 22 (01)