Annealing for Distributed Global Optimization

被引:0
|
作者
Swenson, Brian [1 ]
Kar, Soummya [2 ]
Poor, H. Vincent [1 ]
Moura, Jose M. F. [2 ]
机构
[1] Princeton Univ, Dept Elect Engn, Princeton, NJ 08540 USA
[2] Carnegie Mellon Univ, Dept Elect & Comp Engn, Pittsburgh, PA 15213 USA
来源
2019 IEEE 58TH CONFERENCE ON DECISION AND CONTROL (CDC) | 2019年
基金
美国国家科学基金会;
关键词
Distributed optimization; nonconvex optimization; multiagent systems; STOCHASTIC-APPROXIMATION; CONVERGENCE; ALGORITHM;
D O I
10.1109/cdc40024.2019.9029708
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The paper proves convergence to global optima for a class of distributed algorithms for nonconvex optimization in network-based multi-agent settings. Agents are permitted to communicate over a time-varying undirected graph. Each agent is assumed to possess a local objective function (assumed to be smooth, but possibly nonconvex). The paper considers algorithms for optimizing the sum function. A distributed algorithm of the consensus + innovations type is proposed which relies on first-order information at the agent level. Under appropriate conditions on network connectivity and the cost objective, convergence to the set of global optima is achieved by an annealing-type approach, with decaying Gaussian noise independently added into each agent's update step. It is shown that the proposed algorithm converges in probability to the set of global minima of the sum function.
引用
收藏
页码:3018 / 3025
页数:8
相关论文
共 50 条
  • [1] Distributed Global Optimization by Annealing
    Swenson, Brian
    Kar, Soummya
    Poor, H. Vincent
    Moura, Jose M. F.
    2019 IEEE 8TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP 2019), 2019, : 181 - 185
  • [2] Distributed Optimization With Global Constraints Using Noisy Measurements
    Mai, Van Sy
    La, Richard J.
    Zhang, Tao
    Battou, Abdella
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (02) : 1089 - 1096
  • [3] Distributed Global Optimization for a Class of Nonconvex Optimization With Coupled Constraints
    Ren, Xiaoxing
    Li, Dewei
    Xi, Yugeng
    Shao, Haibin
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (08) : 4322 - 4329
  • [4] ON DISTRIBUTED STOCHASTIC GRADIENT ALGORITHMS FOR GLOBAL OPTIMIZATION
    Swenson, Brian
    Sridhar, Anirudh
    Poor, H. Vincent
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 8594 - 8598
  • [5] A Collaborative Neurodynamic Approach to Distributed Global Optimization
    Xia, Zicong
    Liu, Yang
    Wang, Jun
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2023, 53 (05): : 3141 - 3151
  • [6] On Distributed Nonconvex Optimization: Projected Subgradient Method for Weakly Convex Problems in Networks
    Chen, Shixiang
    Garcia, Alfredo
    Shahrampour, Shahin
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (02) : 662 - 675
  • [7] Evolutionary annealing: global optimization in measure spaces
    Lockett, Alan J.
    Miikkulainen, Risto
    JOURNAL OF GLOBAL OPTIMIZATION, 2014, 58 (01) : 75 - 108
  • [8] A Distributed Algorithm for Convex Constrained Optimization Under Noise
    Chatzipanagiotis, Nikolaos
    Zavlanos, Michael M.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2016, 61 (09) : 2496 - 2511
  • [9] Distributed hybrid optimization for multi-agent systems
    Tan XueGang
    Yuan Yang
    He WangLi
    Cao JinDe
    Huang TingWen
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2022, 65 (08) : 1651 - 1660
  • [10] Distributed Optimization Design for Computation of Algebraic Riccati Inequalities
    Zeng, Xianlin
    Chen, Jie
    Hong, Yiguang
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (03) : 1924 - 1935