Characterization of different sugar alcohols as phase thermal energy storage applications

被引:153
作者
del Barrio, E. Palomo [1 ]
Godin, A. [2 ]
Duquesne, M. [3 ]
Daranlot, J. [4 ]
Jolly, J. [4 ]
Alshaer, W. [5 ]
Kouadio, T. [2 ]
Sommier, A. [2 ]
机构
[1] Univ Bordeaux, UMR 5295 I2M, F-33400 Talence, France
[2] CNRS, UMR 5295 I2M, F-33400 Talence, France
[3] Inst Natl Polytech Bordeaux, UMR 5295 I2M, F-33400 Talence, France
[4] SOLVAY, Lab Futur, 178 Av Dr Schweitzer, F-33608 Pessac, France
[5] Dept Mech Engn, Banha 13512, Egypt
关键词
Thermal energy storage; PCM; Sugar alcohols; Characterization; LATENT-HEAT STORAGE; CARBON FOAMS; SOLIDIFICATION BEHAVIOR; NATURAL POLYOLS; SOLAR COOKER; D-MANNITOL; DEGREES-C; CONDUCTIVITY; ERYTHRITOL; MIXTURES;
D O I
10.1016/j.solmat.2016.10.009
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Sugar alcohols (SA) are attractive phase change materials (PCM) for thermal energy storage applications at low to-medium temperatures (70-180 degrees C). Five pure sugar alcohols (xylitol, adonitol, L-arabitol, erythritol, D-mannitol) and three eutectic blends (eythritol/xylitol, L-arabitol/erythritol, L-arabitol/xylitol) are investigated in this paper. Experimental characterization of such materials as PCMs is provided. This encompasses the measurement of their melting point and latent heat of fusion, as well as the experimental determination of all key physical properties (specific heat, thermal conductivity, thermal diffusivity, density, viscosity) as a function of the temperature. The performances of the studied materials are compared to those of most currently used PCMs (paraffin waxes, salt hydrates etc.) in the field of thermal energy storage. The most significant applications, including solar seasonal energy storage, are also discussed.
引用
收藏
页码:560 / 569
页数:10
相关论文
共 40 条
[11]   TRANSIENT PLANE SOURCE TECHNIQUES FOR THERMAL-CONDUCTIVITY AND THERMAL-DIFFUSIVITY MEASUREMENTS OF SOLID MATERIALS [J].
GUSTAFSSON, SE .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1991, 62 (03) :797-804
[12]   New PCMs prepared from erythritol-polyalcohols mixtures for latent heat storage between 80 and 100°C [J].
Hidaka, H ;
Yamazaki, M ;
Yabe, M ;
Kakiuchi, H ;
Ona, EP ;
Kojima, Y ;
Matsuda, H .
JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, 2004, 37 (09) :1155-1162
[13]  
Himran S., 2015, INT J MECH AEROSP IN, V9, P1765
[14]   Sucrose-based carbon foams with enhanced thermal conductivity [J].
Jana, P. ;
Fierro, V. ;
Celzard, A. .
INDUSTRIAL CROPS AND PRODUCTS, 2016, 89 :498-506
[15]   Thermal conductivity improvement of composite carbon foams based on tannin-based disordered carbon matrix and graphite fillers [J].
Jana, P. ;
Fierro, V. ;
Pizzi, A. ;
Celzard, A. .
MATERIALS & DESIGN, 2015, 83 :635-643
[16]   Biomass-derived, thermally conducting, carbon foams for seasonal thermal storage [J].
Jana, P. ;
Fierro, V. ;
Pizzi, A. ;
Ceizard, A. .
BIOMASS & BIOENERGY, 2014, 67 :312-318
[17]   Thermal and flow behaviors in heat transportation container using phase change material [J].
Kaizawa, Akihide ;
Kamano, Hiroomi ;
Kawai, Atsushi ;
Jozuka, Tetsuji ;
Senda, Takeshi ;
Maruoka, Nobuhiro ;
Akiyama, Tomohiro .
ENERGY CONVERSION AND MANAGEMENT, 2008, 49 (04) :698-706
[18]   Preparation of erythritol-graphite foam phase change composite with enhanced thermal conductivity for thermal energy storage applications [J].
Karthik, M. ;
Faik, A. ;
Blanco-Rodriguez, P. ;
Rodriguez-Aseguinolaza, J. ;
D'Aguanno, B. .
CARBON, 2015, 94 :266-276
[19]   Salt hydrates as latent heat storage materials:Thermophysical properties and costs [J].
Kenisarin, Murat ;
Mahkamov, Khamid .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2016, 145 :255-286
[20]   Thermophysical properties of some organic phase change materials for latent heat storage. A review [J].
Kenisarin, Murat M. .
SOLAR ENERGY, 2014, 107 :553-575