Development of a Data-Driven Method for Online Battery Remaining-Useful-Life Prediction

被引:9
|
作者
Hell, Sebastian Matthias [1 ]
Kim, Chong Dae [1 ]
机构
[1] TH Koln, D-50679 Cologne, Germany
来源
BATTERIES-BASEL | 2022年 / 8卷 / 10期
关键词
lithium-ion batteries; remaining-useful-life (RUL); gated recurrent unit neural network (GRU NN); real-world data; STATE;
D O I
10.3390/batteries8100192
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Remaining-useful-life (RUL) prediction of Li-ion batteries is used to provide an early indication of the expected lifetime of the battery, thereby reducing the risk of failure and increasing safety. In this paper, a detailed method is presented to make long-term predictions for the RUL based on a combination of gated recurrent unit neural network (GRU NN) and soft-sensing method. Firstly, an indirect health indicator (HI) was extracted from the charging processes using a soft-sensing method that can accurately describe power degradation instead of capacity. Then, a GRU NN with a sliding window was applied to learn the long-term performance development. The method also uses a dropout and early stopping method to prevent overfitting. To build the models and validate the effectiveness of the proposed method, a real-world NASA battery data set with various battery measurements was used. The results show that the method can produce a long-term and accurate RUL prediction at each position of the degradation progression based on several historical battery data sets.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Development of a Data-Driven Method for Online Battery Remaining-Useful-Life Prediction
    Hell, Sebastian Matthias
    Kim, Chong Dae
    Batteries, 2022, 8 (10)
  • [2] State-of-Health Estimation and Remaining-Useful-Life Prediction for Lithium-Ion Battery Using a Hybrid Data-Driven Method
    Gou, Bin
    Xu, Yan
    Feng, Xue
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (10) : 10854 - 10867
  • [3] Remaining useful life prediction for lithium-ion battery using a data-driven method
    Jin Z.
    Fang C.
    Wu J.
    Li J.
    Zeng W.
    Zhao X.
    International Journal of Wireless and Mobile Computing, 2022, 23 (3-4) : 239 - 249
  • [4] DATA-DRIVEN PREDICTION METHOD FOR REMAINING USEFUL LIFE OF ROLLING BEARINGS
    Xu, Shiyi
    Li, Tianyun
    Zhang, Yao
    PROCEEDINGS OF ASME 2024 43RD INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, OMAE2024, VOL 2, 2024,
  • [5] Data-driven prognostic framework for remaining useful life prediction
    Motrani A.
    Noureddine R.
    International Journal of Industrial and Systems Engineering, 2023, 43 (02) : 210 - 221
  • [6] An adaptive data-driven method for accurate prediction of remaining useful life of rolling bearings
    Yanfeng Peng
    Junsheng Cheng
    Yanfei Liu
    Xuejun Li
    Zhihua Peng
    Frontiers of Mechanical Engineering, 2018, 13 : 301 - 310
  • [7] An adaptive data-driven method for accurate prediction of remaining useful life of rolling bearings
    Peng, Yanfeng
    Cheng, Junsheng
    Liu, Yanfei
    Li, Xuejun
    Peng, Zhihua
    FRONTIERS OF MECHANICAL ENGINEERING, 2018, 13 (02) : 301 - 310
  • [8] A Data-Driven Method with Feature Enhancement and Adaptive Optimization for Lithium-Ion Battery Remaining Useful Life Prediction
    Peng, Jun
    Zheng, Zhiyong
    Zhang, Xiaoyong
    Deng, Kunyuan
    Gao, Kai
    Li, Heng
    Chen, Bin
    Yang, Yingze
    Huang, Zhiwu
    ENERGIES, 2020, 13 (03)
  • [9] Prediction of Lithium-ion Battery Remaining Useful Life Based on Hybrid Data-Driven Method with Optimized Parameter
    Cai, Yishan
    Yang, Lin
    Deng, Zhongwei
    Zhao, Xiaowei
    Deng, Hao
    PROCEEDINGS OF 2017 2ND INTERNATIONAL CONFERENCE ON POWER AND RENEWABLE ENERGY (ICPRE), 2017, : 1 - 6
  • [10] A Data-Driven Neural Network Approach for Remaining Useful Life Prediction
    Yan, Jihong
    Guo, Chaozhong
    Wang, Xing
    Zhao, Debin
    ADVANCED DESIGN AND MANUFACTURE III, 2011, 450 : 544 - 547