Finite-time stabilization for hyper-chaotic Lorenz system families via adaptive control

被引:22
作者
Li, Rui-hong [1 ]
Chen, Wei-sheng [1 ]
Li, Shuang [2 ]
机构
[1] Xidian Univ, Dept Math, Xian 710071, Peoples R China
[2] Xian Univ Finance & Econ, Sch Stat, Xian 710100, Peoples R China
关键词
Hyper-chaotic system; Finite-time stabilization; Adaptive feedback control; STATE-FEEDBACK CONTROL; NONLINEAR-SYSTEMS; SYNCHRONIZATION; STABILITY; COMMUNICATION;
D O I
10.1016/j.apm.2012.05.004
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper is concerned with finite-time stabilization of hyper-chaotic Lorenz system families. Based on the finite-time stability theory, a novel adaptive control technique is presented to achieve finite-time stabilization for hyper-chaotic system. The controller is simple and easy to be implemented, and can stabilize almost all well known high-dimensional chaotic systems. Simulation results for hyper-chaotic Lorenz system, Chua's oscillator, Rossler system are provided to illustrate the effectiveness of the proposed scheme. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:1966 / 1972
页数:7
相关论文
共 25 条
[1]   Sufficient Conditions for Finite-Time Stability of Impulsive Dynamical Systems [J].
Ambrosino, Roberto ;
Calabrese, Francesco ;
Cosentino, Carlo ;
De Tommasi, Gianmaria .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2009, 54 (04) :861-865
[2]   Finite-time stability of continuous autonomous systems [J].
Bhat, SP ;
Bernstein, DS .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 38 (03) :751-766
[3]  
Bhat SP, 1997, P AMER CONTR CONF, P2513, DOI 10.1109/ACC.1997.609245
[4]   Stability analysis for the synchronization of chaotic systems with different order: application to secure communications [J].
Bowong, S .
PHYSICS LETTERS A, 2004, 326 (1-2) :102-113
[5]   Generating hyperchaotic Lu attractor via state feedback control [J].
Chen, AM ;
Lu, JN ;
Lü, JH ;
Yu, SM .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 364 :103-110
[6]  
Gao TG, 2006, CHINESE PHYS, V15, P1190, DOI 10.1088/1009-1963/15/6/011
[7]   Spatiotemporal communication with synchronized optical chaos [J].
García-Ojalvo, J ;
Roy, R .
PHYSICAL REVIEW LETTERS, 2001, 86 (22) :5204-5207
[8]   Finite time stabilization of chaotic systems via single input [J].
Guo, Rongwei ;
Vincent, U. E. .
PHYSICS LETTERS A, 2010, 375 (02) :119-124
[9]   Adaptive finite-time control of nonlinear systems with parametric uncertainty [J].
Hong, YG ;
Wang, JK ;
Cheng, DZ .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2006, 51 (05) :858-862
[10]   On an output feedback finite-time stabilization problem [J].
Hong, YR ;
Huang, J ;
Xu, YS .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2001, 46 (02) :305-309