DELAY-RANGE-DEPENDENT BOUNDED REAL LEMMA FOR TIME-DELAY SYSTEMS

被引:3
|
作者
Li, Tao [1 ,2 ]
Guo, Lei [2 ,3 ]
Lin, Chong [4 ]
Zhang, Yuming [4 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Dept Informat & Commun, Nanjing 210044, Peoples R China
[2] Southeast Univ, Res Inst Automat, Nanjing 210096, Peoples R China
[3] Beihang Univ, Sch Instrument Sci & Optoelect Engn, Beijing 100083, Peoples R China
[4] Qingdao Univ, Coll Automat Engn, Inst Complex Sci, Qingdao 266071, Peoples R China
基金
美国国家科学基金会;
关键词
Delay-range-dependent; uncertain; bounded real lemma; linear fractional form; linear matrix inequality;
D O I
10.1002/asjc.71
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, Bounded Real Lemma (BRL) for linear systems with time-varying delay in a range is described. Unlike previous results, the low bound of the range is not restricted to be 0. Based on a new Lyapunov-Krasovskii functional, a del ay-range-dependent BRL is obtained in term of linear matrix inequality. It is shown that this new BRL can provide less conservative results than some existing ones. When time-varying linear fractional form uncertainties appear in the delay system, a robust del ay-range-dependent BRL is also given. Numerical examples are given to demonstrate the applicability of the proposed approach.
引用
收藏
页码:708 / 717
页数:10
相关论文
共 50 条
  • [1] Improved delay-dependent bounded real lemma for uncertain time-delay systems
    Li, Tao
    Guo, Lei
    Xin, Xin
    INFORMATION SCIENCES, 2009, 179 (20) : 3711 - 3719
  • [2] Delay and its time-derivative dependent bounded real lemma for linear time-delay systems
    Jiang, XF
    Xu, WL
    CHINESE JOURNAL OF ELECTRONICS, 2004, 13 (02): : 289 - 292
  • [3] Further Delay-Range-Dependent Robust Stability Analysis for Time-Delay Systems
    Yu Jianjiang
    Zhang Kanjian
    Fei Shumin
    Zhao Xianlin
    PROCEEDINGS OF THE 27TH CHINESE CONTROL CONFERENCE, VOL 2, 2008, : 110 - 114
  • [4] Delay-range-dependent control synthesis for time-delay systems with actuator saturation
    Zhang, Lixian
    Boukas, El-Kebir
    Haidar, Ahmad
    AUTOMATICA, 2008, 44 (10) : 2691 - 2695
  • [5] Improved delay-range-dependent stability analysis of a time-delay system with norm bounded uncertainty
    Dey, Rajeeb
    Ghosh, Sandip
    Ray, Goshaidas
    Rakshit, Anjan
    Balas, Valentina Emilia
    ISA TRANSACTIONS, 2015, 58 : 50 - 57
  • [6] Delay-range-dependent stability criterion for interval time-delay systems with nonlinear perturbations
    Ramakrishnan K.
    Ray G.
    International Journal of Automation and Computing, 2011, 8 (1) : 141 - 146
  • [7] Delay-range-dependent control of nonlinear time-delay systems under input saturation
    Rehan, Muhammad
    Iqbal, Naeem
    Hong, Keum-Shik
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2016, 26 (08) : 1647 - 1666
  • [8] Delay-range-dependent Stability Criterion for Interval Time-delay Systems with Nonlinear Perturbations
    K.Ramakrishnan
    G.Ray
    International Journal of Automation & Computing, 2011, 8 (01) : 141 - 146
  • [9] New bounded real lemma representations for time-delay systems and their applications
    Fridman, E
    Shaked, U
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2001, 46 (12) : 1973 - 1979
  • [10] Nonlinear time-delay anti-windup compensator synthesis for nonlinear time-delay systems: A delay-range-dependent approach
    Hussain, Muntazir
    Rehan, Muhammad
    NEUROCOMPUTING, 2016, 186 : 54 - 65