A derivation of Griffith functionals from discrete finite-difference models

被引:7
作者
Crismale, Vito [1 ]
Scilla, Giovanni [2 ]
Solombrino, Francesco [2 ]
机构
[1] Ecole Polytech, CNRS, CMAP, F-91128 Palaiseau, France
[2] Univ Napoli Federico II, Dipartimento Matemat Applicaz R Caccioppoli, Via Cintia Monte St Angelo, I-80126 Naples, Italy
关键词
IMAGE SEGMENTATION; DENSITY RESULT; APPROXIMATION; MUMFORD;
D O I
10.1007/s00526-020-01858-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze a finite-difference approximation of a functional of Ambrosio-Tortorelli type in brittle fracture, in the discrete-to-continuum limit. In a suitable regime between the competing scales, namely if the discretization step delta is smaller than the ellipticity parameter epsilon, we show the Gamma-convergence of the model to the Griffith functional, containing only a term enforcing Dirichlet boundary conditions and no L-p fidelity term. Restricting to two dimensions, we also address the case in which a (linearized) constraint of non-interpenetration of matter is added in the limit functional, in the spirit of a recent work by Chambolle, Conti and Francfort.
引用
收藏
页数:46
相关论文
共 33 条
[1]  
ALICANDRO R., 2000, Ann. Sc. Norm. Super. Pisa Cl. Sci., V29, P671
[2]   APPROXIMATION OF FUNCTIONALS DEPENDING ON JUMPS BY ELLIPTIC FUNCTIONALS VIA GAMMA-CONVERGENCE [J].
AMBROSIO, L ;
TORTORELLI, VM .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1990, 43 (08) :999-1036
[3]  
AMBROSIO L, 1992, B UNIONE MAT ITAL, V6B, P105
[4]   Fine properties of functions with bounded deformation [J].
Ambrosio, L ;
Coscia, A ;
DalMaso, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1997, 139 (03) :201-238
[5]  
Ambrosio L., 2000, OX MATH M, pxviii, DOI 10.1017/S0024609301309281
[6]  
[Anonymous], 2018, J EUR MATH SOC JEMS
[7]  
Bach A., 2019, ARXIV190208437
[8]   Quantitative analysis of finite-difference approximations of free-discontinuity problems [J].
Bach, Annika ;
Braides, Andrea ;
Zeppieri, Caterina Ida .
INTERFACES AND FREE BOUNDARIES, 2020, 22 (03) :317-381
[9]   DISCRETE APPROXIMATION OF A FREE DISCONTINUITY PROBLEM [J].
BELLETTINI, G ;
COSCIA, A .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1994, 15 (3-4) :201-224
[10]  
Bellettini G, 1998, MATH Z, V228, P337, DOI 10.1007/PL00004617