A note on the dynamic and static displacements from a point source in multilayered media

被引:728
作者
Zhu, LP [1 ]
Rivera, LA
机构
[1] St Louis Univ, Dept Earth & Atmospher Sci, St Louis, MO 63103 USA
[2] Ecole & Observ Sci Terre, F-67084 Strasbourg, France
[3] CALTECH, Seismol Lab, Pasadena, CA 91125 USA
关键词
deformation; elastic wave theory; seismic wave propagation;
D O I
10.1046/j.1365-246X.2002.01610.x
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
A simple and unified approach is presented to solve both the elasto-dynamic and elasto-static problems of point sources in a multi-layered half-space by using the Thompson-Haskell propagator matrix technique. It is shown that the apparent incompatibility between the two is associated with the degeneracy of the dynamic problem when omega= 0 and both can be handled uniformly using the Jordan canonical forms of matrices. We re-derive the propagator matrices for both the dynamic and static cases. We then show that the dynamic propagator matrix and the solution converge to their static counterparts as omega--> 0. Satisfactory static deformation can be obtained numerically using the dynamic solution at near-zero frequency.
引用
收藏
页码:619 / 627
页数:9
相关论文
共 22 条
[1]  
Aki K., 1980, QUANTITATIVE SEISMOL, VII
[2]  
ARNOLD VI, 1981, LONDON MATH SOC LECT, V53, P46
[3]  
BENMENAHEM A, 1968, B SEISMOL SOC AM, V58, P1519
[4]  
GANTMATCHER FR, 1960, MATRIX THEORY
[5]  
HANSEN WW, 1935, PHYS REV, V47, P139
[6]  
Harkrider D. G., 1964, B SEISMOL SOC AM, V54, P627
[7]  
Haskell N. A., 1963, B SEISMOL SOC AM, V51, P495
[8]  
Haskell N. A., 1953, B SEISMOL SOC AM, V43, P17, DOI DOI 10.1785/BSSA0430010017
[9]  
Haskell NA., 1964, B SEISMOL SOC AM, V54, P377
[10]  
HELMBERGER DV, 1983, EARTHQUAKES OBSERVAT, P174