A modified fractional Landweber method for a backward problem for the inhomogeneous time-fractional diffusion equation in a cylinder

被引:10
|
作者
Yang, Shuping [1 ]
Xiong, Xiangtuan [1 ]
Han, Yaozong [1 ]
机构
[1] Northwest Normal Univ, Dept Math, Lanzhou, Gansu, Peoples R China
基金
中国国家自然科学基金;
关键词
Backward problem; modified fractional Landweber method; error estimate;
D O I
10.1080/00207160.2020.1803297
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a backward problem for the inhomogeneous time-fractional diffusion equation in a cylinder. Such a problem is ill-posed. Based on the solution given by the separation of variables, we apply a modified fractional Landweber method to solve it. Error estimates are presented under the a-priori and the a-posteriori choice rules for regularization parameters, respectively. Relative to the classical Landweber method, the modified fractional Landweber method can reduce the total number of iterations to achieve the same accuracy. Numerical example is given to show the validity of the scheme.
引用
收藏
页码:2375 / 2393
页数:19
相关论文
共 50 条
  • [1] Tikhonov regularization method for a backward problem for the inhomogeneous time-fractional diffusion equation
    Nguyen Huy Tuan
    Le Dinh Long
    Tatar, Salih
    APPLICABLE ANALYSIS, 2018, 97 (05) : 842 - 863
  • [2] A backward problem for the time-fractional diffusion equation
    Al-Jamal, Mohammad F.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (07) : 2466 - 2474
  • [3] VARIATIONAL METHOD FOR A BACKWARD PROBLEM FOR A TIME-FRACTIONAL DIFFUSION EQUATION
    Wei, Ting
    Xian, Jun
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2019, 53 (04): : 1223 - 1244
  • [4] On a backward problem for inhomogeneous time-fractional diffusion equations
    Nguyen Hoang Luc
    Le Nhat Huynh
    Nguyen Huy Tuan
    Le Dinh Long
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 78 (05) : 1317 - 1333
  • [5] The backward problem for an inhomogeneous time-fractional diffusion-wave equation in an axis-symmetric cylinder
    Shi, Chengxin
    Cheng, Hao
    Geng, Xiaoxiao
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 137 : 44 - 60
  • [6] Regularization of a backward problem for the inhomogeneous time-fractional wave equation
    Huy Tuan, Nguyen
    Au, Vo
    Nhat Huynh, Le
    Zhou, Yong
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (08) : 5450 - 5463
  • [7] An Iterative Method for Backward Time-Fractional Diffusion Problem
    Wang, Jun-Gang
    Wei, Ting
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2014, 30 (06) : 2029 - 2041
  • [8] HOMOTOPY ANALYSIS METHOD FOR SOLVING THE BACKWARD PROBLEM FOR THE TIME-FRACTIONAL DIFFUSION EQUATION
    Al-jamal, Mohammad F.
    JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2023, 16 (04): : 763 - 788
  • [9] A MODIFIED QUASI-BOUNDARY VALUE METHOD FOR THE BACKWARD TIME-FRACTIONAL DIFFUSION PROBLEM
    Wei, Ting
    Wang, Jun-Gang
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2014, 48 (02): : 603 - 621
  • [10] On a final value problem for the time-fractional diffusion equation with inhomogeneous source
    Nguyen Huy Tuan
    Le Dinh Long
    Van Thinh Nguyen
    Thanh Tran
    INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2017, 25 (09) : 1367 - 1395