Quasibreathers in the MMT model

被引:12
作者
Pushkarev, A. [1 ,2 ,3 ]
Zakharov, V. E. [1 ,2 ,3 ,4 ]
机构
[1] Novosibirsk State Univ, Novosibirsk 630090, Russia
[2] Waves & Solitons LLC, Phoenix, AZ 85015 USA
[3] RAS, PN Lebedev Phys Inst, Moscow 119991, Russia
[4] Univ Arizona, Dept Math, Tucson, AZ 85721 USA
基金
美国国家科学基金会;
关键词
Nonlinear Schrodinger equation; Solitons; Freak waves; Singularities; Breathers; WAVE TURBULENCE; FREAK WAVES; WATER;
D O I
10.1016/j.physd.2013.01.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We report numerical detection of a new type of localized structures in the frame of Majda-McLaughlin-Tabak (MMT) model adjusted for description of essentially nonlinear gravity waves on the surface of ideal deep water. These structures - quasibreathers or oscillating quasisolitons - can be treated as groups of freak waves closely resembling experimentally observed "Three Sisters" wave packets on the ocean surface, The MMT model has quasisolitonic solutions. Unlike NLSE solitons, MMT quasisolitons are permanently backward radiating energy, but nevertheless do exist during thousands of carrier wave periods. Quasisolitons of small amplitude are regular and stable, but large-amplitude ones demonstrate oscillations of amplitude and spectral shape. This effect can be explained by periodic formation of weak collapses, carrying out negligibly small amount of energy. We call oscillating quasisolitons "quasibreathers". (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:55 / 61
页数:7
相关论文
共 22 条
[1]   How to excite a rogue wave [J].
Akhmediev, N. ;
Soto-Crespo, J. M. ;
Ankiewicz, A. .
PHYSICAL REVIEW A, 2009, 80 (04)
[2]   PROPAGATION DYNAMICS OF ULTRASHORT PULSES IN NONLINEAR FIBER COUPLERS [J].
AKHMEDIEV, N ;
SOTOCRESPO, JM .
PHYSICAL REVIEW E, 1994, 49 (05) :4519-4529
[3]  
AKHMEDIEV N, 1997, NONLINEAR PULSES BEA, P40801
[4]  
[Anonymous], 2006, NONLINEAR FIBER OPTI
[5]   On the Formation of Freak Waves on the Surface of Deep Water [J].
Dyachenko, A. I. ;
Zakharov, V. E. .
JETP LETTERS, 2008, 88 (05) :307-311
[6]   Second-order nonlinear Schrodinger equation breather solutions in the degenerate and rogue wave limits [J].
Kedziora, David J. ;
Ankiewicz, Adrian ;
Akhmediev, Nail .
PHYSICAL REVIEW E, 2012, 85 (06)
[7]  
Kharif C, 2009, ADV GEOPHYS ENV MECH, P1, DOI 10.1007/978-3-540-88419-4_1
[8]  
Liu PC, 2007, GEOFIZIKA, V24, P57
[9]  
MAJDA AJ, 1997, J NONLINEAR SCI, V6, P9
[10]  
PEREGRINE DH, 1983, J AUST MATH SOC B, V25, P16, DOI 10.1017/S0334270000003891