Fusion of Multi-view Multi-exposure Images with Delaunay Triangulation

被引:0
作者
Yu, Hanyi [1 ]
Zhou, Yue [1 ]
机构
[1] Shanghai Jiao Tong Univ, Image Proc & Pattern Recognit, Shanghai, Peoples R China
来源
NEURAL INFORMATION PROCESSING, ICONIP 2016, PT II | 2016年 / 9948卷
关键词
Multi-view; Multi-exposure; Delaunay triangulation; Image registration; Image fusion;
D O I
10.1007/978-3-319-46672-9_76
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we present a completely automatic method for multi-view multi-exposure image fusion. The technique adopts the normalized cross-correlation (NCC) as the measurement of the similarity of interest points. With the matched feature points, we divide images into a set of triangles by Delaunay triangulation. Then we apply affine transformation to each matched triangle pairs respectively to get the registration of multi-view images. After images aligned, we partition the image domain into uniformed regions and select the images that provides the most information with certain blocks. The selected images are fused together under monotonically blending functions.
引用
收藏
页码:682 / 689
页数:8
相关论文
共 50 条
  • [31] Multi-exposure Image Fusion Method Using Anisotropic Diffusion
    Bhateja, Vikrant
    Singhal, Ashutosh
    Singh, Anil
    THIRD INTERNATIONAL CONGRESS ON INFORMATION AND COMMUNICATION TECHNOLOGY, 2019, 797 : 893 - 900
  • [32] Searching a Compact Architecture for Robust Multi-Exposure Image Fusion
    Liu, Zhu
    Liu, Jinyuan
    Wu, Guanyao
    Chen, Zihang
    Fan, Xin
    Liu, Risheng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (07) : 6224 - 6237
  • [33] An improved algorithm of multi-exposure image fusion by detail enhancement
    Zhong Qu
    Xu Huang
    Ling Liu
    Multimedia Systems, 2021, 27 : 33 - 44
  • [34] Perceptual Evaluation for Multi-Exposure Image Fusion of Dynamic Scenes
    Fang, Yuming
    Zhu, Hanwei
    Ma, Kede
    Wang, Zhou
    Li, Shutao
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 (29) : 1127 - 1138
  • [35] Multi-exposure image fusion based on improved pyramid algorithm
    Li, Ting
    Xie, Kai
    Li, Tong
    Sun, Xinyu
    Yang, Zepeng
    PROCEEDINGS OF 2020 IEEE 4TH INFORMATION TECHNOLOGY, NETWORKING, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (ITNEC 2020), 2020, : 2028 - 2031
  • [36] Pure-Color Preserving Multi-Exposure Image Fusion
    Visavakitcharoen, Artit
    Kinoshita, Yuma
    Kiya, Hitoshi
    INTERNATIONAL WORKSHOP ON ADVANCED IMAGE TECHNOLOGY (IWAIT) 2019, 2019, 11049
  • [37] Multi-Task Learning Approach Using Dynamic Hyperparameter for Multi-Exposure Fusion
    Im, Chan-Gi
    Son, Dong-Min
    Kwon, Hyuk-Ju
    Lee, Sung-Hak
    MATHEMATICS, 2023, 11 (07)
  • [38] Coarse-to-fine multi-scale attention-guided network for multi-exposure image fusion
    Hao Zhao
    Jingrun Zheng
    Xiaoke Shang
    Wei Zhong
    Jinyuan Liu
    The Visual Computer, 2024, 40 : 1697 - 1710
  • [39] Coarse-to-fine multi-scale attention-guided network for multi-exposure image fusion
    Zhao, Hao
    Zheng, Jingrun
    Shang, Xiaoke
    Zhong, Wei
    Liu, Jinyuan
    VISUAL COMPUTER, 2024, 40 (03) : 1697 - 1710
  • [40] Deep Learning for Multi-View Ultrasonic Image Fusion
    Pilikos, Georgios
    Horchens, Lars
    Van Leeuwen, Tristan
    Lucka, Felix
    INTERNATIONAL ULTRASONICS SYMPOSIUM (IEEE IUS 2021), 2021,