The effect of electrochemical cycling on the strength of LiCoO2

被引:9
作者
Feng, Lin [1 ]
Lu, Xuefeng [2 ]
Zhao, Tingting [2 ]
Dillon, Shen [1 ]
机构
[1] Univ Illinois, Urbana, IL 61801 USA
[2] Lanzhou Univ Technol, State Key Lab Adv Proc & Recycling Nonferrous Met, Lanzhou, Gansu, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
electrodes; lithium oxide; mechanical properties; PARTICLE FRACTURE; INDUCED STRESS; ION BATTERIES; CAPACITY FADE; LITHIUM; INTERCALATION; CATHODE; ELECTRODES; EVOLUTION; 1ST-PRINCIPLES;
D O I
10.1111/jace.15893
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This work utilizes in situ transmission electron microscopy-based nanopillar compression to investigate the effect of electrochemical cycling on the mechanical properties of LiCoO2. The ultimate strength of LiCoO2 in the pristine state, and after 1 and 11 cycles are 5.62 +/- 0.22 GPa, 3.91 +/- 1.22 GPa, and 2.27 +/- 1.07 GPa, respectively. The reduced average yield strengths and the large standard deviations of cycled samples, relative to the pristine powder, are hypothesized to result from nonuniform accumulation of Li+ site-point defects during cycling; either H+ or Li+ vacancies. Density functional theory calculations support our hypothesized link between a nonuniform Li site-point defect distribution in the cathode and reduction in the materials cohesive strength.
引用
收藏
页码:372 / 381
页数:10
相关论文
共 50 条
  • [31] Enhanced electrochemical properties of fluoridecoated LiCoO2 thin films
    Lee, Hye Jin
    Kim, Seuk Buom
    Park, Yong Joon
    NANOSCALE RESEARCH LETTERS, 2012, 7
  • [32] Thermal evolution of LiCoO2 structure and Raman spectra below 400?°C
    Ryabin, Alexander A.
    Krylov, Alexander S.
    Krylova, Svetlana N.
    Kiselev, Evgeny A.
    Pelegov, Dmitry V.
    JOURNAL OF CHEMICAL PHYSICS, 2023, 159 (08)
  • [33] Electrochemical behavior of LiCoO2 in a saturated aqueous Li2SO4 solution
    Wang, G. J.
    Qu, Q. T.
    Wang, B.
    Shi, Y.
    Tian, S.
    Wu, Y. P.
    Holze, R.
    ELECTROCHIMICA ACTA, 2009, 54 (04) : 1199 - 1203
  • [34] Insights into the electrochemical Li/Na-exchange in layered LiCoO2 cathode material
    Heubner, Christian
    Matthey, Bjoern
    Lein, Tobias
    Wolke, Florian
    Liebmann, Tobias
    Laemmel, Christoph
    Schneider, Michael
    Herrmann, Mathias
    Michaelis, Alexander
    ENERGY STORAGE MATERIALS, 2020, 27 : 377 - 386
  • [35] Role of mesopores on the electrochemical performance of LiCoO2 composite cathodes for lithium ion batteries
    Zhang, Qingtang
    Fan, Weifeng
    Wang, Guoping
    Qu, Meizhen
    Yu, Zuolong
    IONICS, 2011, 17 (08) : 697 - 703
  • [36] The Effect of Thermal Treatment on the Physical Properties of LiCoO2 Stoichiometric Composition
    Korneikov, R. I.
    Efremov, V. V.
    Ivanenko, V. I.
    Kesarev, K. A.
    RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2021, 57 (05) : 499 - 504
  • [37] Effect of Mg doping on the properties of combustion synthesized LiCoO2 powders
    Valanarasu, S.
    Chandramohan, R.
    Thirumalai, J.
    Vijayan, T. A.
    Srikumar, S. R.
    Mahalingam, T.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2010, 21 (08) : 827 - 832
  • [38] HIGH-PERFORMANCE LICOO2 POSITIVE ELECTRODE MATERIAL
    YAZAMI, R
    LEBRUN, N
    BONNEAU, M
    MOLTENI, M
    JOURNAL OF POWER SOURCES, 1995, 54 (02) : 389 - 392
  • [39] Operando Monitoring the Insulator-Metal Transition of LiCoO2
    Flores, Eibar
    Mozhzhukhina, Nataliia
    Aschauer, Ulrich
    Berg, Erik J.
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (19) : 22540 - 22548
  • [40] Effect of Stirring on Particle Shape and Size in Hydrothermal Synthesis of LiCoO2
    Hamao, Naoki
    Itasaka, Hiroki
    Mimura, Ken-ichi
    Liu, Zheng
    Hamamoto, Koichi
    ACS OMEGA, 2024, 9 (22): : 23597 - 23602