On special values of Dirichlet series with periodic coefficients

被引:0
|
作者
Bharadwaj, Abhishek [1 ]
Pathak, Siddhi [2 ]
机构
[1] Dept Math & Stat, 48 Univ Ave,Jeffery Hall, Kingston, ON K7L 3N6, Canada
[2] Chennai Math Inst, H-1 SIPCOT IT Pk, Siruseri Kelambakkam 603103, Tamil Nadu, India
关键词
Special values of Dirichlet; L-functions; Polylog conjecture; Chowla-Milnor conjecture; CHOWLA; CONJECTURE;
D O I
10.1016/j.jnt.2021.10.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f be an algebraic valued periodic arithmetical function and L(s, f), defined as L(s, f) := Sigma(infinity)(n=1) f(n)/n(s) for R(s) > 1, be the associated Dirichlet series. In this paper, we study the vanishing and arithmetic nature of the special values L(k, f) when k > 1 is a positive integer. We prove a generalization of the Baker-Birch-Wirsing theorem conditional on the Polylog conjecture. Adopting a new approach, we define an induction operator on the space of periodic arithmetic functions, which makes precise the notion of an "imprimitive" arithmetic function. This enables us to obtain an analog of Okada's criterion for L(1, f) = 0 and derive a natural decomposition of the vector space O-k(N) = {f : Z -> Q vertical bar f(n + N) = f(n) for all n is an element of Z, L(k,f) = 0}. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:978 / 1011
页数:34
相关论文
共 50 条