Completing the Lotmar model for the human eye with the crystalline lens refraction index variation function

被引:0
|
作者
Pascu, A. T. [1 ]
Bacescu, D. [1 ]
机构
[1] Univ Politehn Bucuresti, Dept Mechatron & Precis Mech, Bucharest, Romania
来源
JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS | 2015年 / 17卷 / 5-6期
关键词
Eyeball; Refractive index; Crystalline lens; Interpolation; Wavefront aberration; Modulation transfer function (MTF);
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In the scientific papers are presented various models for the optical system of the human eye, considered ideal, known by the term of emmetropic eye. Little information can be found regarding the extra-paraxial aberrations of the human eye, like: Spot diagram, transversal aberrations, distribution of light in the image point, aberration of the wavefront and modulation transfer function. This paper presents a synthesis of the most important optical aberrations of the human eye, more precisely the aberration of the wavefront and modulation transfer function (MTF) and a method for the calculation of the refractive index of the crystalline lens, which will lead to ideal aberrations. The mathematical model selected is based on the spherical diopters hypothesis and is limited by diffraction.
引用
收藏
页码:757 / 766
页数:10
相关论文
共 14 条
  • [1] Design of the Finite Schematic Eye with the Crystalline Lens with GRIN Index
    Kim, BongHwan
    KOREAN JOURNAL OF OPTICS AND PHOTONICS, 2007, 18 (02) : 167 - 170
  • [2] A wide-angle gradient index optical model of the crystalline lens and eye of the rainbow trout
    Jagger, WS
    Sands, PJ
    VISION RESEARCH, 1996, 36 (17) : 2623 - 2639
  • [3] Design and analysis of an adaptive lens that mimics the performance of the crystalline lens in the human eye
    Santiago-Alvarado, Agustin
    Cruz-Felix, Angel S.
    Iturbide-Jimenez, F.
    Martinez-Lopez, M.
    Ramirez-Como, M.
    Armengol-Cruz, V.
    Vasquez-Baez, I.
    CURRENT DEVELOPMENTS IN LENS DESIGN AND OPTICAL ENGINEERING XV, 2014, 9192
  • [4] Measuring refractive index distribution in the human eye lens
    Pope, James M.
    Atchison, David A.
    ONCOTARGET, 2015, 6 (37) : 39395 - 39395
  • [5] Aging of the optics of the human eye: Lens refraction models and principal plane locations
    Koretz, JF
    Cook, CA
    OPTOMETRY AND VISION SCIENCE, 2001, 78 (06) : 396 - 404
  • [6] Research of the crystalline lens model in human eye optical system based on zemax interface technology
    Kong, Mei-Mei
    Guangzi Xuebao/Acta Photonica Sinica, 2014, 43 (12):
  • [7] Paraxial equivalent of the gradient-index lens of the human eye
    Manns, Fabrice
    Ho, Arthur
    BIOMEDICAL OPTICS EXPRESS, 2022, 13 (10) : 5131 - 5150
  • [8] Composite modified Luneburg model of human eye lens
    Gomez-Correa, J. E.
    Balderas-Mata, S. E.
    Pierscionek, B. K.
    Chavez-Cerda, S.
    OPTICS LETTERS, 2015, 40 (17) : 3990 - 3993
  • [9] Nested shell optical model of the lens of the human eye
    Campbell, Charles E.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2010, 27 (11) : 2432 - 2441
  • [10] Contribution of the crystalline lens gradient refractive index to the accommodation amplitude in non-human primates: In vitro studies
    Maceo, Bianca M.
    Manns, Fabrice
    Borja, David
    Nankivil, Derek
    Uhlhorn, Stephen
    Arrieta, Esdras
    Ho, Arthur
    Augusteyn, Robert C.
    Parel, Jean-Marie
    JOURNAL OF VISION, 2011, 11 (13): : 23