An Inertial, Magnetic and Vision Based Trusted Pose Estimation for AR and 3D Data Qualification on Long Urban Pedestrian Displacements

被引:1
|
作者
Antigny, Nicolas [1 ]
Servieres, Myriam [2 ]
Renaudin, Valerie [3 ]
机构
[1] Ecole Cent Nantes, IFSTTAR GEOLOC IRSTV, Nantes, France
[2] Ecole Cent Nantes, CRENAU AAU IRSTV, Nantes, France
[3] IFSTTAR GEOLOC IRSTV, Nantes, France
来源
ADJUNCT PROCEEDINGS OF THE 2017 IEEE INTERNATIONAL SYMPOSIUM ON MIXED AND AUGMENTED REALITY (ISMAR-ADJUNCT) | 2017年
关键词
Outdoor Augmented Reality; mobile device; Geographic Information Systems; city visualization;
D O I
10.1109/ISMAR-Adjunct.2017.57
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In the context of pedestrian navigation, urban environment constitutes a challenging area for both localization and Augmented Reality (AR). In order to display 3D Geographic Information System (GIS) content in AR and to qualify them, we propose to fuse the pose estimated using vision thanks to a precisely known 3D urban furniture model with rotation estimated from inertial and magnetic measurements. An acquisition conducted in urban environment on a long pedestrian path permits to validate the contribution of sensors fusion and allows to qualify the pose estimation needed for AR 3D GIS content characterization.
引用
收藏
页码:168 / 169
页数:2
相关论文
共 50 条
  • [1] Fusion of 3D GIS, Vision, Inertial and Magnetic Data for Improved Urban Pedestrian Navigation and Augmented Reality Applications
    Antigny, Nicolas
    Servieres, Myriam
    Renaudin, Valerie
    NAVIGATION-JOURNAL OF THE INSTITUTE OF NAVIGATION, 2018, 65 (03): : 431 - 447
  • [2] Corner-based 3D Object Pose Estimation in Robot Vision
    Zhang, Lei
    Guo, Zhiyang
    Chen, Huilin
    Shuai, Liguo
    2016 8TH INTERNATIONAL CONFERENCE ON INTELLIGENT HUMAN-MACHINE SYSTEMS AND CYBERNETICS (IHMSC), VOL. 2, 2016, : 363 - 368
  • [3] SMPL-Based 3D Pedestrian Pose Prediction
    Kunchala, Anil
    Bouroche, Melanie
    D'Arcy, Lorraine
    Schoen-Phelan, Bianca
    2021 16TH IEEE INTERNATIONAL CONFERENCE ON AUTOMATIC FACE AND GESTURE RECOGNITION (FG 2021), 2021,
  • [4] Adapted human pose: monocular 3D human pose estimation with zero real 3D pose data
    Liu, Shuangjun
    Sehgal, Naveen
    Ostadabbas, Sarah
    APPLIED INTELLIGENCE, 2022, 52 (12) : 14491 - 14506
  • [5] Adapted human pose: monocular 3D human pose estimation with zero real 3D pose data
    Shuangjun Liu
    Naveen Sehgal
    Sarah Ostadabbas
    Applied Intelligence, 2022, 52 : 14491 - 14506
  • [6] Split-and-recombine and vision transformer based 3D human pose estimation
    Lu, Xinyi
    Xu, Fan
    Hu, Shuiyi
    Yu, Tianqi
    Hu, Jianling
    SIGNAL IMAGE AND VIDEO PROCESSING, 2025, 19 (01)
  • [7] 3D pose estimation of large and complicated workpieces based on binocular stereo vision
    Luo, Zhifeng
    Zhang, Ke
    Wang, Zhigang
    Zheng, Jian
    Chen, Yixin
    APPLIED OPTICS, 2017, 56 (24) : 6822 - 6836
  • [8] Fusing Visual and Inertial Sensors with Semantics for 3D Human Pose Estimation
    Andrew Gilbert
    Matthew Trumble
    Charles Malleson
    Adrian Hilton
    John Collomosse
    International Journal of Computer Vision, 2019, 127 : 381 - 397
  • [9] Fusing Visual and Inertial Sensors with Semantics for 3D Human Pose Estimation
    Gilbert, Andrew
    Trumble, Matthew
    Malleson, Charles
    Hilton, Adrian
    Collomosse, John
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2019, 127 (04) : 381 - 397
  • [10] Monocular 3D Pose Estimation via Pose Grammar and Data Augmentation
    Xu, Yuanlu
    Wang, Wenguan
    Liu, Tengyu
    Liu, Xiaobai
    Xie, Jianwen
    Zhu, Song-Chun
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (10) : 6327 - 6344