Quantum bounds for inequalities involving marginal expectation values

被引:15
|
作者
Wolfe, Elie [1 ]
Yelin, S. F. [1 ,2 ]
机构
[1] Univ Connecticut, Dept Phys, Storrs, CT 06269 USA
[2] Harvard Smithsonian Ctr Astrophys, ITAMP, Cambridge, MA 02138 USA
来源
PHYSICAL REVIEW A | 2012年 / 86卷 / 01期
关键词
NONLOCALITY;
D O I
10.1103/PhysRevA.86.012123
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We review and develop an algorithm to determine arbitrary quantum bounds based on the seminal work of Tsirelson [Lett. Math. Phys. 4, 93 (1980)]. The potential of this algorithm is demonstrated by both deriving marginal-involving number-valued quantum bounds and identifying a generalized class of function-valued quantum bounds. Those results facilitate an eight-dimensional volume analysis of quantum mechanics which extends the work of Cabello [Phys. Rev. A 72, 012113 (2005)]. We contrast the quantum volume defined by these bounds to that of macroscopic locality, defined by the inequalities corresponding to the first level of the hierarchy of Navascues et al. [New J. Phys. 10, 073013 (2008)], proving our function-valued quantum bounds to be more complete.
引用
收藏
页数:6
相关论文
共 34 条
  • [21] Experimental test of Mermin inequalities on a five-qubit quantum computer
    Alsina, Daniel
    Ignacio Latorre, Jose
    PHYSICAL REVIEW A, 2016, 94 (01)
  • [22] Robust Self-Testing of Quantum Systems via Noncontextuality Inequalities
    Bharti, Kishor
    Ray, Maharshi
    Varvitsiotis, Antonios
    Warsi, Naqueeb Ahmad
    Cabello, Adan
    Kwek, Leong-Chuan
    PHYSICAL REVIEW LETTERS, 2019, 122 (25)
  • [23] Demonstrating quantum contextuality of indistinguishable particles by a single family of noncontextuality inequalities
    Su, Hong-Yi
    Chen, Jing-Ling
    Liang, Yeong-Cherng
    SCIENTIFIC REPORTS, 2015, 5
  • [24] Tight Bell inequalities with no quantum violation from qubit unextendible product bases
    Augusiak, R.
    Fritz, T.
    Kotowski, Ma
    Kotowski, Mi
    Pawlowski, M.
    Lewenstein, M.
    Acin, A.
    PHYSICAL REVIEW A, 2012, 85 (04):
  • [25] Using Weyl operators to study Mermin's inequalities in quantum field theory
    De Fabritiis, P.
    Guedes, F. M.
    Guimaraes, M. S.
    Roditi, I.
    Sorella, S. P.
    PHYSICAL REVIEW D, 2024, 109 (04)
  • [26] Tsallis entropy for assessing quantum correlation with Bell-type inequalities in EPR experiment
    Chapeau-Blondeau, Francois
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2014, 414 : 204 - 215
  • [27] Quantum bounds on multiplayer linear games and device-independent witness of genuine tripartite entanglement
    Murta, Glaucia
    Ramanathan, Ravishankar
    Moller, Natalia
    Cunha, Marcelo Terra
    PHYSICAL REVIEW A, 2016, 93 (02)
  • [28] Violation of all two-party facet Bell inequalities by almost-quantum correlations
    Ramanathan, Ravishankar
    PHYSICAL REVIEW RESEARCH, 2021, 3 (03):
  • [29] Quantum Violations of N-Qubit Svetlichny's Inequalities are Tightly Bound by the Exclusivity Principle
    Xiang Yang
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2015, 63 (02) : 141 - 144
  • [30] Non-adaptive measurement-based quantum computation and multi-party Bell inequalities
    Hoban, Matty J.
    Campbell, Earl T.
    Loukopoulos, Klearchos
    Browne, Dan E.
    NEW JOURNAL OF PHYSICS, 2011, 13