A Malaria Model with Two Delays

被引:15
作者
Wan, Hui [1 ]
Cui, Jing-an [2 ]
机构
[1] Nanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210046, Jiangsu, Peoples R China
[2] Beijing Univ Civil Engn & Architecture, Sch Sci, Beijing 100044, Peoples R China
关键词
EPIDEMIC MODEL; TRANSMISSION; BIFURCATIONS;
D O I
10.1155/2013/601265
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A transmission model of malaria with two delays is formulated. We calculate the basic reproduction number R-0 for the model. It is shown that the basic reproduction number is a decreasing function of two time delays. The existence of the equilibria is studied. Our results suggest that the model undergoes a backward bifurcation, which implies that bringing the basic reproduction number below 1 is not enough to eradicate malaria.
引用
收藏
页数:8
相关论文
共 18 条
  • [1] ANDERSON R M, 1991
  • [2] Anderson R.M., 1982, Population biology of infectious diseases
  • [3] [Anonymous], 2005, INT J MANAGEMENT SYS
  • [4] [Anonymous], 1911, PREVENTION MALARIA, DOI DOI 10.1007/978-0-85729-115-8-12
  • [5] BAILEY NTJ, 1988, MALARIA PRINCIPLES P
  • [6] Bruce-Chwatt LeonardJan., 1980, Essential Malariology
  • [7] Bifurcation analysis of a mathematical model for malaria transmission
    Chitnis, Nakul
    Cushing, J. M.
    Hyman, J. M.
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2006, 67 (01) : 24 - 45
  • [8] Modelling the transition of asexual blood stages of Plasmodium falciparum to gametocytes
    Diebner, HH
    Eichner, M
    Molineaux, L
    Collins, WE
    Jeffrey, GM
    Dietz, K
    [J]. JOURNAL OF THEORETICAL BIOLOGY, 2000, 202 (02) : 113 - 127
  • [9] Backward bifurcations in dengue transmission dynamics
    Garba, S. M.
    Gumel, A. B.
    Abu Bakar, M. R.
    [J]. MATHEMATICAL BIOSCIENCES, 2008, 215 (01) : 11 - 25
  • [10] The mathematics of infectious diseases
    Hethcote, HW
    [J]. SIAM REVIEW, 2000, 42 (04) : 599 - 653