Well-posedness for KdV-type equations with quadratic nonlinearity

被引:1
|
作者
Hirayama, Hiroyuki [1 ]
Kinoshita, Shinya [2 ]
Okamoto, Mamoru [3 ]
机构
[1] Univ Miyazaki, Org Promot Tenure Track, 1-1 Gakuenkibanadai Nishi, Miyazaki 8892192, Japan
[2] Univ Bielefeld, Fak Math, Postfach 10 01 31, D-33501 Bielefeld, Germany
[3] Shinshu Univ, Div Math & Phys, Fac Engn, 4-17-1 Wakasato, Nagano 3808553, Japan
基金
日本学术振兴会;
关键词
KdV-type equation; Well-posedness; Gauge transformation; CAUCHY-PROBLEM;
D O I
10.1007/s00028-019-00540-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Cauchy problem of the KdV-type equation partial differential tu+13 partial differential x3u=c1u partial differential x2u+c2( partial differential xu)2,u(0)=u0.$$\begin{aligned} \partial _tu + \frac{1}{3} \partial _x<^>3 u = c_1 u \partial _x<^>2u + c_2 (\partial _xu)<^>2, \quad u(0)=u_0. \end{aligned}$$\end{document}Pilod (J Differ Equ 245(8):2055-2077, 2008) showed that the flow map of this Cauchy problem fails to be twice differentiable in the Sobolev spaceHs(R)for anys is an element of Rifc1 not equal 0 By using a gauge transformation, we point out that the contraction mapping theorem is applicable to the Cauchy problem if the initial data are inH2(R)with bounded primitives. Moreover, we prove that the Cauchy problem is locally well-posed inH1(R) with bounded primitives.
引用
收藏
页码:811 / 835
页数:25
相关论文
共 50 条