Well-posedness for KdV-type equations with quadratic nonlinearity

被引:1
|
作者
Hirayama, Hiroyuki [1 ]
Kinoshita, Shinya [2 ]
Okamoto, Mamoru [3 ]
机构
[1] Univ Miyazaki, Org Promot Tenure Track, 1-1 Gakuenkibanadai Nishi, Miyazaki 8892192, Japan
[2] Univ Bielefeld, Fak Math, Postfach 10 01 31, D-33501 Bielefeld, Germany
[3] Shinshu Univ, Div Math & Phys, Fac Engn, 4-17-1 Wakasato, Nagano 3808553, Japan
基金
日本学术振兴会;
关键词
KdV-type equation; Well-posedness; Gauge transformation; CAUCHY-PROBLEM;
D O I
10.1007/s00028-019-00540-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Cauchy problem of the KdV-type equation partial differential tu+13 partial differential x3u=c1u partial differential x2u+c2( partial differential xu)2,u(0)=u0.$$\begin{aligned} \partial _tu + \frac{1}{3} \partial _x<^>3 u = c_1 u \partial _x<^>2u + c_2 (\partial _xu)<^>2, \quad u(0)=u_0. \end{aligned}$$\end{document}Pilod (J Differ Equ 245(8):2055-2077, 2008) showed that the flow map of this Cauchy problem fails to be twice differentiable in the Sobolev spaceHs(R)for anys is an element of Rifc1 not equal 0 By using a gauge transformation, we point out that the contraction mapping theorem is applicable to the Cauchy problem if the initial data are inH2(R)with bounded primitives. Moreover, we prove that the Cauchy problem is locally well-posed inH1(R) with bounded primitives.
引用
收藏
页码:811 / 835
页数:25
相关论文
共 50 条
  • [11] Well-Posedness Results and Dissipative Limit of High Dimensional KdV-Type Equations
    Carvajal, Xavier
    Esfahani, Amin
    Panthee, Mahendra
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2017, 48 (04): : 505 - 550
  • [12] WELL-POSEDNESS OF KDV TYPE EQUATIONS
    Carvajal, Xavier
    Panthee, Mahendra
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2012,
  • [13] Well-Posedness Results and Dissipative Limit of High Dimensional KdV-Type Equations
    Xavier Carvajal
    Amin Esfahani
    Mahendra Panthee
    Bulletin of the Brazilian Mathematical Society, New Series, 2017, 48 : 505 - 550
  • [14] A SHARP CONDITION FOR THE WELL-POSEDNESS OF THE LINEAR KDV-TYPE EQUATION
    Akhunov, Timur
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (12) : 4207 - 4220
  • [15] LOCAL WELL-POSEDNESS OF THE FIFTH-ORDER KDV-TYPE EQUATIONS ON THE HALF-LINE
    Cavalcante, Marcio
    Kwak, Chulkwang
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2019, 18 (05) : 2607 - 2661
  • [16] DIOPHANTINE CONDITIONS IN GLOBAL WELL-POSEDNESS FOR COUPLED KDV-TYPE SYSTEMS
    Oh, Tadahiro
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2009,
  • [17] Well-Posedness for a Coupled System of Kawahara/KdV Type Equations
    Cezar I. Kondo
    Ronaldo B. Pes
    Applied Mathematics & Optimization, 2021, 84 : 2985 - 3024
  • [18] Well-Posedness for a Coupled System of Kawahara/KdV Type Equations
    Kondo, Cezar I.
    Pes, Ronaldo B.
    APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 84 (03): : 2985 - 3024
  • [19] WELL-POSEDNESS FOR THE FOURTH-ORDER SCHRODINGER EQUATIONS WITH QUADRATIC NONLINEARITY
    Zheng, Jiqiang
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2011, 16 (5-6) : 467 - 486
  • [20] Global well-posedness and nonsqueezing property for the higher-order KdV-type flow
    Hong, Sunghyun
    Kwak, Chulkwang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 441 (01) : 140 - 166