Macrobenthos habitat potential mapping using GIS-based artificial neural network models

被引:22
作者
Lee, Saro [1 ]
Park, Inhye [1 ]
Koo, Bon Joo [2 ]
Ryu, Joo-Hyung [3 ]
Choi, Jong-Kuk [3 ]
Woo, Han Jun [4 ]
机构
[1] Korea Inst Geosci & Mineral Resources KIGAM, Geosci Informat Ctr, Taejon 305350, South Korea
[2] Korea Inst Ocean Sci & Technol, Marine Ecosyst Res Div, Ansan 426744, South Korea
[3] Korea Inst Ocean Sci & Technol, Korea Ocean Satellite Ctr, Ansan 426744, South Korea
[4] Korea Inst Ocean Sci & Technol, Maritime Secur Res Ctr, Ansan 426744, South Korea
关键词
Habitat mapping; Tidal flat; Artificial neural network; Geographic information system (GIS); Remote sensing; LANDSLIDE SUSCEPTIBILITY; TIDAL FLATS; USA; CLASSIFICATION; REPLACEMENT; SCALE; KOREA; RIVER; BAY;
D O I
10.1016/j.marpolbul.2012.10.023
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper proposes and tests a method of producing macrobenthos habitat potential maps in Hwangdo tidal flat, Korea based on an artificial neural network. Samples of macrobenthos were collected during field work, and eight control factors were compiled as a spatial database from remotely sensed data and GIS analysis. The macrobenthos habitat potential maps were produced using an artificial neural network model. Macrobenthos habitat potential maps were made for Macrophthalmus dilatatus, Cerithideopsilla cingulata, and Armandia lanceolata. The maps were validated by compared with the surveyed habitat locations. A strong correlation between the potential maps and species locations was revealed. The validation result showed average accuracies of 74.9%, 78.32%, and 73.27% for M. dilatatus, C. cingulata, and A. lanceolata, respectively. A GIS-based artificial neural network model combined with remote sensing techniques is an effective tool for mapping the areas of macrobenthos habitat potential in tidal flats. (c) 2012 Published by Elsevier Ltd.
引用
收藏
页码:177 / 186
页数:10
相关论文
共 46 条
[2]   GIS-models work well, but are not enough: Habitat preferences of Lanius collurio at multiple levels and conservation implications [J].
Brambilla, Mattia ;
Casale, Fabio ;
Bergero, Valentina ;
Crovetto, G. Matteo ;
Falco, Riccardo ;
Negri, Irene ;
Siccardi, Paolo ;
Bogliani, Giuseppe .
BIOLOGICAL CONSERVATION, 2009, 142 (10) :2033-2042
[3]   Global biodiversity conservation priorities [J].
Brooks, T. M. ;
Mittermeier, R. A. ;
da Fonseca, G. A. B. ;
Gerlach, J. ;
Hoffmann, M. ;
Lamoreux, J. F. ;
Mittermeier, C. G. ;
Pilgrim, J. D. ;
Rodrigues, A. S. L. .
SCIENCE, 2006, 313 (5783) :58-61
[4]  
Bustami Rosmina, 2007, IAENG International Journal of Computer Science, V34, P228
[5]   Validation of an artificial neural network model for landslide susceptibility mapping [J].
Choi, Jaewon ;
Oh, Hyun-Joo ;
Won, Joong-Sun ;
Lee, Saro .
ENVIRONMENTAL EARTH SCIENCES, 2010, 60 (03) :473-483
[6]   Crustacean habitat potential mapping in a tidal flat using remote sensing and GIS [J].
Choi, Jong-Kuk ;
Oh, Hyun-Joo ;
Koo, Bon Joo ;
Ryu, Joo-Hyung ;
Lee, Saro .
ECOLOGICAL MODELLING, 2011, 222 (08) :1522-1533
[7]   Spatial relationships between surface sedimentary facies distribution and topography using remotely sensed data: Example from the Ganghwa tidal flat, Korea [J].
Choi, Jong-Kuk ;
Eom, JinAh ;
Ryu, Joo-Hyung .
MARINE GEOLOGY, 2011, 280 (1-4) :205-211
[8]   Macrobenthos habitat mapping in a tidal flat using remotely sensed data and a GIS-based probabilistic model [J].
Choi, Jong-Kuk ;
Oh, Hyun-Joo ;
Koo, Bon Joo ;
Lee, Saro ;
Ryu, Joo-Hyung .
MARINE POLLUTION BULLETIN, 2011, 62 (03) :564-572
[9]   Quantitative estimation of intertidal sediment characteristics using remote sensing and GIS [J].
Choi, Jong-Kuk ;
Ryu, Joo-Hyung ;
Lee, Yoon-Kyung ;
Yoo, Hong-Rhyong ;
Woo, Han Jun ;
Kim, Chang Hwan .
ESTUARINE COASTAL AND SHELF SCIENCE, 2010, 88 (01) :125-134
[10]   Application of a fuzzy operator to susceptibility estimations of coal mine subsidence in Taebaek City, Korea [J].
Choi, Jong-Kuk ;
Kim, Ki-Dong ;
Lee, Saro ;
Won, Joong-Sun .
ENVIRONMENTAL EARTH SCIENCES, 2010, 59 (05) :1009-1022