Local unitary invariants of generic multiqubit states

被引:15
|
作者
Jing, Naihuan [1 ,2 ]
Fei, Shao-Ming [3 ,4 ]
Li, Ming [5 ]
Li-Jost, Xianqing [4 ]
Zhang, Tinggui [6 ]
机构
[1] S China Univ Technol, Sch Math, Guangzhou 510640, Guangdong, Peoples R China
[2] N Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
[3] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
[4] Max Planck Inst Math Sci, D-04103 Leipzig, Germany
[5] China Univ Petr, Dept Math, Qingdao 266555, Shandong, Peoples R China
[6] Hainan Normal Univ, Sch Math & Stat, Haikou 571158, Hainan, Peoples R China
来源
PHYSICAL REVIEW A | 2015年 / 92卷 / 02期
基金
中国国家自然科学基金;
关键词
ENTANGLEMENT; EQUIVALENCE;
D O I
10.1103/PhysRevA.92.022306
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present a complete set of local unitary invariants for generic multiqubit systems which gives necessary and sufficient conditions for two states being local unitary equivalent. These invariants are canonical polynomial functions in terms of the generalized Bloch representation of the quantum states. In particular, we prove that there are at most 12 polynomial local unitary invariants for two-qubit states and at most 90 polynomials for three-qubit states. Comparison with Makhlin's 18 local unitary invariants is given for two-qubit systems.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Local Unitary Invariants for Multipartite Quantum Systems
    Wang Jing
    Li Ming
    Fei Shao-Ming
    Xian-Qing Li-Jost
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2014, 62 (05) : 673 - 676
  • [22] Negativity fonts, multiqubit invariants and four qubit maximally entangled states
    S. Shelly Sharma
    N. K. Sharma
    Quantum Information Processing, 2012, 11 : 1695 - 1714
  • [23] Negativity fonts, multiqubit invariants and four qubit maximally entangled states
    Shelly Sharma, S.
    Sharma, N. K.
    QUANTUM INFORMATION PROCESSING, 2012, 11 (06) : 1695 - 1714
  • [24] Using partial transpose and realignment to generate local unitary invariants
    Bhosale, Udaysinh T.
    Shuddhodan, K. V.
    Lakshminarayan, Arul
    PHYSICAL REVIEW A, 2013, 87 (05):
  • [25] All degree 6 local unitary invariants of k qudits
    Szalay, Szilard
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (06)
  • [26] Local unitary symmetries of hypergraph states
    Lyons, David W.
    Upchurch, Daniel J.
    Walck, Scott N.
    Yetter, Chase D.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (09)
  • [27] Local invariants for a class of mixed states
    Albeverio, S
    Fei, SM
    Goswami, D
    PHYSICS LETTERS A, 2005, 340 (1-4) : 37 - 42
  • [28] UNITARY INVARIANTS FOR NESTS
    ERDOS, JA
    PACIFIC JOURNAL OF MATHEMATICS, 1967, 23 (02) : 229 - &
  • [29] Remote Implementation of Unitary Gates in Terms of Multiqubit Entanglement
    Xiong, Lingjun
    Chen, Ziwei
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2024, 63 (12)
  • [30] Representing multiqubit unitary evolutions via Stokes tensors
    Altafini, C
    PHYSICAL REVIEW A, 2004, 70 (03): : 032331 - 1