Solvable model for chimera states of coupled oscillators

被引:535
|
作者
Abrams, Daniel M. [1 ]
Mirollo, Rennie [2 ]
Strogatz, Steven H. [3 ]
Wiley, Daniel A. [4 ]
机构
[1] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA
[2] Boston Coll, Dept Math, Chestnut Hill, MA 02467 USA
[3] Cornell Univ, Dept Theoret & Appl Mech, Ithaca, NY 14853 USA
[4] Univ Maryland, Dept Math, College Pk, MD 20742 USA
关键词
D O I
10.1103/PhysRevLett.101.084103
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Networks of identical, symmetrically coupled oscillators can spontaneously split into synchronized and desynchronized subpopulations. Such chimera states were discovered in 2002, but are not well understood theoretically. Here we obtain the first exact results about the stability, dynamics, and bifurcations of chimera states by analyzing a minimal model consisting of two interacting populations of oscillators. Along with a completely synchronous state, the system displays stable chimeras, breathing chimeras, and saddle-node, Hopf, and homoclinic bifurcations of chimeras.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Impact of Hyperbolicity on Chimera States in Ensembles of Nonlocally Coupled Chaotic Oscillators
    Semenova, N.
    Zakharova, A.
    Schoell, E.
    Anishchenko, V.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2015 (ICNAAM-2015), 2016, 1738
  • [32] Mechanism for intensity-induced chimera states in globally coupled oscillators
    Chandrasekar, V. K.
    Gopal, R.
    Venkatesan, A.
    Lakshmanan, M.
    PHYSICAL REVIEW E, 2014, 90 (06)
  • [33] Spiral wave chimera states in large populations of coupled chemical oscillators
    Totz, Jan Frederik
    Rode, Julian
    Tinsley, Mark R.
    Showalter, Kenneth
    Engel, Harald
    NATURE PHYSICS, 2018, 14 (03) : 282 - +
  • [34] Chimera states in two-dimensional networks of locally coupled oscillators
    Kundu, Srilena
    Majhi, Soumen
    Bera, Bidesh K.
    Ghosh, Dibakar
    Lakshmanan, M.
    PHYSICAL REVIEW E, 2018, 97 (02)
  • [35] Minimal chimera states in phase-lag coupled mechanical oscillators
    Ebrahimzadeh, P.
    Schiek, M.
    Jaros, P.
    Kapitaniak, T.
    van Waasen, S.
    Maistrenko, Y.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2020, 229 (12-13): : 2205 - 2214
  • [36] Taming non-stationary chimera states in locally coupled oscillators
    Li, Xueqi
    Lei, Youming
    Ghosh, Dibakar
    CHAOS, 2022, 32 (09)
  • [37] Spiral wave chimera states in large populations of coupled chemical oscillators
    Jan Frederik Totz
    Julian Rode
    Mark R. Tinsley
    Kenneth Showalter
    Harald Engel
    Nature Physics, 2018, 14 : 282 - 285
  • [38] Chimera and phase-cluster states in populations of coupled chemical oscillators
    Tinsley, Mark R.
    Nkomo, Simbarashe
    Showalter, Kenneth
    NATURE PHYSICS, 2012, 8 (09) : 662 - 665
  • [39] The drift of chimera states in a ring of nonlocally coupled bicomponent phase oscillators
    Wang, Wenhao
    Dai, Qionglin
    Cheng, Hongyan
    Li, Haihong
    Yang, Junzhong
    EPL, 2019, 125 (05)
  • [40] Chimera states in systems of nonlocal nonidentical phase-coupled oscillators
    Xie, Jianbo
    Kao, Hsien-Ching
    Knobloch, Edgar
    PHYSICAL REVIEW E, 2015, 91 (03):