Growth and body composition of juvenile largemouth bass Micropterus salmoides in response to dietary protein and energy levels

被引:45
|
作者
Portz, L
Cyrino, JEP
Martino, RC
机构
[1] Univ Sao Paulo, ESALQ, Dept Anim Prod, BR-13418900 Piracicaba, SP, Brazil
[2] Fundacao Inst Pesca Estado Rio de Janeiro, Unidade Tecnol Pescado, Rio De Janeiro, Brazil
[3] Univ Fed Rio de Janeiro, Inst Biol CCS, Rio de Janeiro, Brazil
关键词
body composition; energy; growth; largemouth bass; protein; requirement;
D O I
10.1046/j.1365-2095.2001.00182.x
中图分类号
S9 [水产、渔业];
学科分类号
0908 ;
摘要
To determine the dietary protein and energy requirements of juvenile largemouth bass, 1350 feed-conditioned fishes (average weight 14.46 +/- 0.81 g) were stocked in ninety 60-L cages, set up in 1000-L tanks at three cages/tank, and fed for 64 days with a dry, extruded feed containing six levels of crude protein (CP) (340-540 g kg(-1), with increases of 40 g kg(-1)) and five levels of energy (150.7-171.7 kJ g(-1) feed, with increases of 5.2 kJ). The trial was set up in a 6 x 5 factorial, completely randomized design (n = 3). Weight gain (WG), daily feed consumption (DFC), feed conversion rate (FCR), protein efficiency ratio (PER), specific growth rate (SGR), protein and energy retention were recorded and evaluated. There was no interaction between feed energy and protein levels, with all parameters evaluated. Data analysis by the broken line method showed that the minimum dietary requirement for maximum daily weight gain of 8.0 g kg(-1) is 435.9 g kg(-1) CP; the best feed conversion ratio (1.04:1) was attained with a minimum of 448.2 g kg(-1) CP; a minimum of 162.1 kJ g(-1); DFC was reduced as dietary protein and energy levels increased; dietary levels of 460-500 g kg(-1) CP led to best PER (1.665); best values for protein (33.14 g 100 g(-1)) and energy (26.87 g 100 g(-1)) retention were observed for fish feeding on the 420 g kg(-1) CP ration. Limits of energy to protein ratio to feed largemouth bass are 25.01 and 26.89 mg protein kJ(-1), enabling feed conversion ratios of 0.96-1.10.
引用
收藏
页码:247 / 254
页数:8
相关论文
共 50 条
  • [21] Dietary synbiotics improved the growth, feed utilization and intestinal structure of largemouth bass (Micropterus salmoides) juvenile
    Yang, Pinxian
    Yang, Weining
    He, Ming
    Li, Xiaoqin
    Leng, Xiang-Jun
    AQUACULTURE NUTRITION, 2020, 26 (02) : 590 - 600
  • [22] Dietary vitamin C requirement and its effects on tissue antioxidant capacity of juvenile largemouth bass, Micropterus salmoides
    Chen, Yong-Jun
    Yuan, Rui-Min
    Liu, Yong-Jian
    Yang, Hui-Jun
    Liang, Gui-Ying
    Tian, Li-Xia
    AQUACULTURE, 2015, 435 : 431 - 436
  • [23] Identification of feed enhancers for juvenile largemouth bass Micropterus salmoides
    Kubitza, F
    Lovshin, LL
    Lovell, RT
    AQUACULTURE, 1997, 148 (2-3) : 191 - 200
  • [24] Effect of dietary oxidized fish oil on growth performance, body composition, antioxidant defence mechanism and liver histology of juvenile largemouth bass Micropterus salmoides
    Chen, Y-J
    Liu, Y-J
    Yang, H-J
    Yuan, Y.
    Liu, F-J
    Tian, L-X
    Liang, G-Y
    Yuan, R-M
    AQUACULTURE NUTRITION, 2012, 18 (03) : 321 - 331
  • [25] Appropriate dietary phenylalanine improved growth, protein metabolism and lipid metabolism, and glycolysis in largemouth bass (Micropterus salmoides)
    Changguo Yi
    Hualiang Liang
    Gangchun Xu
    Jian Zhu
    Yongli Wang
    Songlin Li
    Mingchun Ren
    Xiaoru Chen
    Fish Physiology and Biochemistry, 2024, 50 : 349 - 365
  • [26] Effect of dietary lipid level on growth, lipid metabolism and oxidative status of largemouth bass, Micropterus salmoides
    Guo, Jia-ling
    Zhou, Yue-lang
    Zhao, Hang
    Chen, Wen-Yan
    Chen, Yong-Jun
    Lin, Shi-Mei
    AQUACULTURE, 2019, 506 : 394 - 400
  • [27] Effect of dietary iron (Fe) level on growth performance and health status of largemouth bass (Micropterus salmoides)
    Mao, Xiangjie
    Chen, Wangwang
    Long, Xianmei
    Pan, Xiaomei
    Liu, Guoqing
    Hu, Wenguang
    Gu, Dianchao
    Tan, Qingsong
    AQUACULTURE, 2024, 581
  • [28] Effects of dietary yeast hydrolysate on the growth, antioxidant response, immune response and disease resistance of largemouth bass (Micropterus salmoides)
    Gong, Yulong
    Yang, Fan
    Hu, Junpeng
    Liu, Cui
    Liu, Haokun
    Han, Dong
    Jin, Junyan
    Yang, Yunxia
    Zhu, Xiaoming
    Yi, Jianhua
    Xie, Shouqi
    FISH & SHELLFISH IMMUNOLOGY, 2019, 94 : 548 - 557
  • [29] Appropriate dietary phenylalanine improved growth, protein metabolism and lipid metabolism, and glycolysis in largemouth bass (Micropterus salmoides)
    Yi, Changguo
    Liang, Hualiang
    Xu, Gangchun
    Zhu, Jian
    Wang, Yongli
    Li, Songlin
    Ren, Mingchun
    Chen, Xiaoru
    FISH PHYSIOLOGY AND BIOCHEMISTRY, 2024, 50 (01) : 349 - 365
  • [30] Effects of dietary nucleotides on growth performance, immune response, intestinal morphology and disease resistance of juvenile largemouth bass, Micropterus salmoides
    Chen, Xiao-chun
    Huang, Xiao-quan
    Tang, Yi-wen
    Zhang, Lei
    Lin, Feng
    JOURNAL OF FISH BIOLOGY, 2022, 101 (01) : 204 - 212