Determining the OPTIMAL DTI analysis method for application in cerebral small vessel disease

被引:12
作者
Egle, Marco [1 ,14 ]
Hilal, Saima [2 ,3 ]
Tuladhar, Anil M. [4 ]
Pirpamer, Lukas [5 ]
Bell, Steven [1 ]
Hofer, Edith [5 ,6 ]
Duering, Marco [7 ,8 ]
Wason, James [9 ]
Morris, Robin G. [10 ]
Dichgans, Martin [7 ,11 ,12 ]
Schmidt, Reinhold [5 ]
Tozer, Daniel J. [1 ]
Barrick, Thomas R. [13 ]
Chen, Christopher [2 ,3 ]
Leeuw, Frank -Erik de [4 ]
Markus, Hugh S. [1 ]
机构
[1] Univ Cambridge, Dept Clin Neurosci, Stroke Res Grp, Cambridge, England
[2] Natl Univ Singapore, Dept Pharmacol, Singapore, Singapore
[3] Natl Univ Hlth Syst, Memory Ageing & Cognit Ctr, Singapore, Singapore
[4] Radboud Univ Nijmegen, Donders Ctr Med Neurosci, Dept Neurol, Med Ctr, Nijmegen, Netherlands
[5] Med Univ Graz, Dept Neurol, Graz, Austria
[6] Med Univ Graz, Inst Med Informat Stat & Documentat, Graz, Austria
[7] Ludwig Maximilians Univ Munchen, Univ Hosp, Inst Stroke & Dementia Res, Munich, Germany
[8] Univ Basel, Med Image Anal Ctr MIAC, Dept Biomed Engn, Basel, Switzerland
[9] Newcastle Univ, Populat Hlth Sci Inst, Baddiley Clark Bldg, Newcastle Upon Tyne, Tyne & Wear, England
[10] Kings Coll London, Inst Psychiat Psychol & Neurosci, Dept Psychol RGM, London, England
[11] Munich Cluster Syst Neurol SyNergy, Munich, Germany
[12] German Ctr Neurodegenerat Dis DZNE, Munich, Germany
[13] St Georges Univ London, Inst Mol & Clin Sci, Neurosci Res Ctr, London, England
[14] Univ Cambridge, Dept Clin Neurosci, Neurol Unit, R3,Box 83,Cambridge Biomed Campus, Cambridge CB2 0QQ, England
基金
英国医学研究理事会;
关键词
Small vessel disease; Diffusion tensor imaging; Dementia; Surrogate marker; Cognition; STRUCTURAL NETWORK EFFICIENCY; DIFFUSION TRACTOGRAPHY; ALZHEIMERS-DISEASE; VASCULAR DEMENTIA; PREDICTS DEMENTIA; MULTIMODAL MRI; RISK; ASSOCIATION; INTEGRITY; DIAGNOSIS;
D O I
10.1016/j.nicl.2022.103114
中图分类号
R445 [影像诊断学];
学科分类号
100207 ;
摘要
Background: DTI is sensitive to white matter (WM) microstructural damage and has been suggested as a surrogate marker for phase 2 clinical trials in cerebral small vessel disease (SVD). The study's objective is to establish the best way to analyse the diffusion-weighted imaging data in SVD for this purpose. The ideal method would be sensitive to change and predict dementia conversion, but also straightforward to implement and ideally auto-mated. As part of the OPTIMAL collaboration, we evaluated five different DTI analysis strategies across six different cohorts with differing SVD severity. Methods: Those 5 strategies were: (1) conventional mean diffusivity WM histogram measure (MD median), (2) a principal component-derived measure based on conventional WM histogram measures (PC1), (3) peak width skeletonized mean diffusivity (PSMD), (4) diffusion tensor image segmentation 8 (DSEG 8) and (5) a WM measure of global network efficiency (Geff). The association between each measure and cognitive function was tested using a linear regression model adjusted by clinical markers. Changes in the imaging measures over time were determined. In three cohort studies, repeated imaging data together with data on incident dementia were available. The association between the baseline measure, change measure and incident dementia conversion was examined using Cox proportional-hazard regression or logistic regression models. Sample size estimates for a hypothetical clinical trial were furthermore computed for each DTI analysis strategy.Results: There was a consistent cross-sectional association between the imaging measures and impaired cognitive function across all cohorts. All baseline measures predicted dementia conversion in severe SVD. In mild SVD, PC1, PSMD and Geff predicted dementia conversion. In MCI, all markers except Geff predicted dementia con- version. Baseline DTI was significantly different in patients converting to vascular dementia than to Alzheimer' s disease. Significant change in all measures was associated with dementia conversion in severe but not in mild SVD. The automatic and semi-automatic measures PSMD and DSEG 0 required the lowest minimum sample sizes for a hypothetical clinical trial in single-centre sporadic SVD cohorts. Conclusion: DTI parameters obtained from all analysis methods predicted dementia, and there was no clear winner amongst the different analysis strategies. The fully automated analysis provided by PSMD offers ad- vantages particularly for large datasets.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Correlations between MRS and DTI in cerebral small vessel disease
    Nitkunan, Arani
    McIntyre, Dominick J. O.
    Barrick, Thomas R.
    O'Sullivan, Michael
    Shen, Yuji
    Clark, Chris A.
    Howe, Franklyn A.
    Markus, Hugh S.
    NMR IN BIOMEDICINE, 2006, 19 (05) : 610 - 616
  • [2] White Matter and Hippocampal Volume Predict the Risk of Dementia in Patients with Cerebral Small Vessel Disease: The RUN DMC Study
    van Uden, Ingeborg W. M.
    van der Holst, Helena M.
    Tuladhar, Anil M.
    van Norden, Anouk G. W.
    de Laat, Karlijn F.
    Rutten-Jacobs, Loes C. A.
    Norris, David G.
    Claassen, Jurgen A. H. R.
    van Dijk, Ewoud J.
    Kessels, Roy P. C.
    de Leeuw, Frank-Erik
    JOURNAL OF ALZHEIMERS DISEASE, 2016, 49 (03) : 863 - 873
  • [3] Hypertension and Cerebral Diffusion Tensor Imaging in Small Vessel Disease
    Gons, Rob A. R.
    de Laat, Karlijn F.
    van Norden, Anouk G. W.
    van Oudheusden, Lucas J. B.
    van Uden, Inge W. M.
    Norris, David G.
    Zwiers, Marcel P.
    de Leeuw, Frank-Erik
    STROKE, 2010, 41 (12) : 2801 - 2806
  • [4] Cerebral small vessel disease in aging and Alzheimer's disease: a comparative study using MRI and SPECT
    Makedonov, I.
    Black, S. E.
    MacIntosh, B. J.
    EUROPEAN JOURNAL OF NEUROLOGY, 2013, 20 (02) : 243 - 250
  • [5] The glymphatic system and cerebral small vessel disease
    Ang, Phillip S.
    Zhang, Douglas M.
    Azizi, Saara-Anne
    de Matos, Salvador A. Norton
    Brorson, James R.
    JOURNAL OF STROKE & CEREBROVASCULAR DISEASES, 2024, 33 (03)
  • [6] Contributions of amyloid beta and cerebral small vessel disease in clinical decline
    Moonen, Justine E. F.
    Haan, Renee
    Bos, Isabelle
    Teunissen, Charlotte
    van de Giessen, Elsmarieke
    Tomassen, Jori
    den Braber, Anouk
    van der Landen, Sophie M.
    de Geus, Eco J. C.
    Legdeur, Nienke
    van Harten, Argonde C.
    Trieu, Calvin
    de Boer, Casper
    Kroeze, Lior
    Barkhof, Frederik
    Visser, Pieter Jelle
    van der Flier, Wiesje M.
    ALZHEIMERS & DEMENTIA, 2024, 20 (03) : 1868 - 1880
  • [7] Cognitive impact of cerebral microbleeds in patients with symptomatic small vessel disease
    Nannoni, Stefania
    Ohlmeier, Laura
    Brown, Robin B.
    Morris, Robin G.
    MacKinnon, Andrew D.
    Markus, Hugh S.
    INTERNATIONAL JOURNAL OF STROKE, 2022, 17 (04) : 415 - 424
  • [8] Retinal structure and vessel density changes in cerebral small vessel disease
    Wang, Dandan
    Wang, Lina
    Wang, Jinjin
    Du, Yang
    Wang, Kaiyue
    Wang, Meizi
    Yang, Liu
    Zhao, Xingquan
    FRONTIERS IN NEUROSCIENCE, 2024, 18
  • [9] Structural network changes in cerebral small vessel disease
    Tuladhar, Anil M.
    Tay, Jonathan
    van Leijsen, Esther
    Lawrence, Andrew J.
    van Uden, Ingeborg Wilhelmina Maria
    Bergkamp, Mayra
    van der Holst, Ellen
    Kessels, Roy P. C.
    Norris, David
    Markus, Hugh S.
    De Leeuw, Frank-Erik
    JOURNAL OF NEUROLOGY NEUROSURGERY AND PSYCHIATRY, 2020, 91 (02) : 196 - 203
  • [10] Detecting apathy in patients with cerebral small vessel disease
    Cai, Xiaoping
    Zhao, Hongyi
    Li, Zhiyi
    Ding, Yu
    Huang, Yonghua
    FRONTIERS IN AGING NEUROSCIENCE, 2022, 14