Genome-wide Identification and Expression Pattern Analysis of BRI1-EMS-suppressor Transcription Factors in Tomato under Abiotic Stresses

被引:0
|
作者
Gao, Yingmei [1 ]
Hu, Jingkang [1 ]
Zhao, Tingting [1 ]
Xu, Xiangyang [1 ]
Jiang, Jingbin [1 ]
Li, Jingfu [1 ]
机构
[1] Northeast Agr Univ, Dept Hort Sci, Harbin 150030, Heilongjiang, Peoples R China
关键词
BES1; expression characteristics; gene structure; phylogeny; Solanum lycopersicum; stress resistance; GENE-EXPRESSION; BES1; FAMILY; BRASSINOSTEROIDS; BIOSYNTHESIS; LOCALIZATION; MODEL;
D O I
10.21273/JASHS04312-17
中图分类号
S6 [园艺];
学科分类号
0902 ;
摘要
BRI1-EMS-suppressor 1 (BES1) is a transcription factor (TF) that functions as a master regulator of brassinosteroid (BR)-regulated gene expression. Here, we provide a complete overview of Solanum lycopersicum BES1 (SLB) genes, including phylogeny, gene structure, protein motifs, chromosome locations and expression characteristics. Through bioinformatic analysis, we compared the sequences of SLB genes, arabidopsis (Arabidopsis thaliana) genes, and chinese cabbage (Brassica pekinensis) genes. All of the gene sequences were divided into three groups by cluster analysis. SLB genes were mapped to the eight tomato (S. lycopersicum) chromosomes. Bioinformatic analysis showed that SLB genes shares similarities with the proteins from other plants, though different species exhibit specific features. The expression patterns of SLB genes in various tissues and under different abiotic conditions were analyzed by quantitative reverse transcription polymerase chain reaction. SLB genes were found to be induced by multiple stresses, particularly salt stress, indicating that SLB genes may have important roles in the response to unfavorable environmental changes. This study provides insight into the evolution of SLB genes and may aid in the further functional identification of BES1 proteins and the response of tomato plants to different stresses.
引用
收藏
页码:84 / +
页数:8
相关论文
共 50 条
  • [11] Genome-wide analysis of citrus TCP transcription factors and their responses to abiotic stresses
    Liu, Dong-Hai
    Luo, Yin
    Han, Han
    Liu, Yong-Zhong
    Alam, Shariq Mahmood
    Zhao, Hui-Xing
    Li, Yan-Ting
    BMC PLANT BIOLOGY, 2022, 22 (01)
  • [12] Genome-wide analysis of citrus TCP transcription factors and their responses to abiotic stresses
    Dong-Hai Liu
    Yin Luo
    Han Han
    Yong-Zhong Liu
    Shariq Mahmood Alam
    Hui-Xing Zhao
    Yan-Ting Li
    BMC Plant Biology, 22
  • [13] Genome-wide identification and characterization of bZIP transcription factors and their expression profile under abiotic stresses in Chinese pear (Pyrus bretschneideri)
    Manzoor, Muhammad Aamir
    Manzoor, Muhammad Mudassar
    Li, Guohui
    Abdullah, Muhammad
    Wang Han
    Han Wenlong
    Shakoor, Awais
    Riaz, Muhammad Waheed
    Rehman, Shamsur
    Cai, Yongping
    BMC PLANT BIOLOGY, 2021, 21 (01)
  • [14] Genome-wide identification and characterization of bZIP transcription factors and their expression profile under abiotic stresses in Chinese pear (Pyrus bretschneideri)
    Muhammad Aamir Manzoor
    Muhammad Mudassar Manzoor
    Guohui Li
    Muhammad Abdullah
    Wang Han
    Han Wenlong
    Awais Shakoor
    Muhammad Waheed Riaz
    Shamsur Rehman
    Yongping Cai
    BMC Plant Biology, 21
  • [15] Genome-wide identification and expression analysis of tomato glycoside hydrolase family 1 β-glucosidase genes in response to abiotic stresses
    Wei, Jinpeng
    Chen, Qiusen
    Lin, Jiaxin
    Chen, Fengqiong
    Chen, Runan
    Liu, Hanlin
    Chu, Peiyu
    Lu, Zhiyong
    Li, Shaozhe
    Yu, Gaobo
    BIOTECHNOLOGY & BIOTECHNOLOGICAL EQUIPMENT, 2022, 36 (01) : 268 - 280
  • [16] Genome-Wide Identification and Expression Analysis of Heat Shock Transcription Factors in Camellia sinensis Under Abiotic Stress
    Li, Guimin
    Shi, Xinying
    Lin, Qinmin
    Lv, Mengmeng
    Chen, Jing
    Wen, Yingxin
    Feng, Zhiyi
    Azam, Syed Muhammad
    Cheng, Yan
    Wang, Shucai
    Cao, Shijiang
    PLANTS-BASEL, 2025, 14 (05):
  • [17] Genome-Wide Identification and Expression Analysis of HSF Transcription Factors in Alfalfa (Medicago sativa) under Abiotic Stress
    Ma, Jin
    Zhang, Guozhe
    Ye, Yacheng
    Shang, Linxue
    Hong, Sidan
    Ma, Qingqing
    Zhao, Yu
    Gu, Cuihua
    PLANTS-BASEL, 2022, 11 (20):
  • [18] Genome-wide identification of chitinase genes in Thalassiosira pseudonana and analysis of their expression under abiotic stresses
    Cheng, Haomiao
    Shao, Zhanru
    Lu, Chang
    Duan, Delin
    BMC PLANT BIOLOGY, 2021, 21 (01)
  • [19] Genome-wide identification of chitinase genes in Thalassiosira pseudonana and analysis of their expression under abiotic stresses
    Haomiao Cheng
    Zhanru Shao
    Chang Lu
    Delin Duan
    BMC Plant Biology, 21
  • [20] Genome-Wide Identification of BrCMF Genes in Brassica rapa and Their Expression Analysis under Abiotic Stresses
    Chen, Luhan
    Wu, Xiaoyu
    Zhang, Meiqi
    Yang, Lin
    Ji, Zhaojing
    Chen, Rui
    Cao, Yunyun
    Huang, Jiabao
    Duan, Qiaohong
    PLANTS-BASEL, 2024, 13 (08):