IRIS-HSVD for automatic MRS data quantification

被引:0
|
作者
Wang, Xin [1 ]
Lee, Jing-Huei [1 ]
机构
[1] Univ Cincinnati, Dept Biomed Engn, Cincinnati, OH 45221 USA
关键词
magnetic resonance spectroscopy; signal processing; estimation; singular value decomposition;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
One of the most difficult problems in Magnetic Resonance Spectroscopy (MRS) data processing is to separate the targeted chemical compounds' signal from a distorted baseline in very noisy data. In this work, we propose a new quantification scheme based on the Iterative Reduction of Interference Signal Hankel Singular Value Decomposition (IRIS-HSVD) algorithm for accurate, robust and automatic quantification of multidimensional human brain P-31 MRS data.
引用
收藏
页码:1749 / 1752
页数:4
相关论文
共 50 条
  • [31] A Novel and Efficient Method for Iris Automatic Location
    School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
    J. China Univ. Min. Technol., 2007, 3 (441-446):
  • [32] Automatic Localization of Iris Using Region Properties
    Ali, Haider
    Ali, Ahmad
    Ul Husnain, Riaz
    Khan, Roman
    Khan, Mohsin
    Khan, Ihsan Ullah
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2011, 11 (07): : 93 - 97
  • [33] An Automatic Algorithm for Evaluating the Precision of Iris Segmentation
    Zuo, Jinyu
    Schmid, Natalia A.
    2008 IEEE SECOND INTERNATIONAL CONFERENCE ON BIOMETRICS: THEORY, APPLICATIONS AND SYSTEMS (BTAS), 2008, : 166 - 171
  • [34] Quantification of MRS data in the frequency domain using a wavelet filter, an approximated Voigt lineshape model and prior knowledge
    Gillies, P.
    Marshall, I.
    Asplund, M.
    Winkler, P.
    Higinbotham, J.
    NMR IN BIOMEDICINE, 2006, 19 (05) : 617 - 626
  • [35] Quantification of iris pigmentation by computerized image analysis.
    Takamoto, T
    Schwartz, B
    Cantor, LB
    Hoop, JS
    Steffens, T
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 1999, 40 (04) : S840 - S840
  • [36] Automatic quantification of microtubule dynamics
    Hadjidemetriou, S
    Duncan, JS
    Toomre, D
    Tuck, D
    2004 2ND IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: MACRO TO NANO, VOLS 1 AND 2, 2004, : 656 - 659
  • [37] Keynote: Automatic Segmentation and Quantification of TB Scale Volumetric Murine Brain Vasculature Data
    Scott, Katherine
    Vemuri, Venkata. N. P.
    Jackson, Hunter
    2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2018, : 3255 - 3255
  • [38] Automatic detection and quantification of coronary calcium on 3D CT angiography data
    Tessmann, Matthias
    Vega-Higuera, Fernando
    Bischoff, Bernhard
    Hausleiter, Jorg
    Greiner, Gueher
    COMPUTER SCIENCE-RESEARCH AND DEVELOPMENT, 2011, 26 (1-2): : 117 - 124
  • [39] AUTOMATIC CARDIAC FLOW QUANTIFICATION ON 3D VOLUME COLOR DOPPLER DATA
    Wang, Yang
    Georgescu, Bogdan
    Datta, Saurabh
    Liu, Shizhen
    Vannan, Mani A.
    Comaniciu, Dorin
    2011 8TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, 2011, : 1688 - 1691
  • [40] Automatic Quantification of Plant Disease from Field Image Data Using Deep Learning
    Garg, Kanish
    Bhugra, Swati
    Lall, Brejesh
    2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2021), 2021, : 1964 - 1971