Design of a parallel compliance device with variable stiffness

被引:5
|
作者
Zhao, Yong [1 ]
Chen, Kunyong [1 ]
Yu, Jue [2 ]
Huang, Shunzhou [3 ]
机构
[1] Shanghai Jiao Tong Univ, State Key Lab Mech Syst & Vibrat, Shanghai Key Lab Digital Manufacture Thin Walled, Shanghai, Peoples R China
[2] Nanjing Res Inst Elect Technol, Nanjing, Peoples R China
[3] Shanghai Aerosp Equipment Manufacturer Co Ltd, Shanghai, Peoples R China
基金
美国国家科学基金会;
关键词
Variable stiffness; parallel compliance device; electromagnetic spring; compliant axes; synthesis; ADJUSTABLE STIFFNESS; MINIMAL-REALIZATION; SPATIAL STIFFNESSES; ACTUATOR; MATRIX; DECOMPOSITION;
D O I
10.1177/0954406220932596
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper presents a parallel compliance device with variable translational stiffness properties. The variation of endpoint stiffness depends on the change of the spring stiffness in each limb. A synthesis algorithm for realizing the desired force compliance performance is built. Based on the proposed algorithm, a group of optimal spring stiffness can be derived. For the implementation of this device, an electromagnetic linear spring with current-controlled stiffness is developed. After testing the mechanical characteristics of the electromagnetic spring, a prototype of the parallel compliance device is built. The endpoint stiffness under different combinations of spring stiffness values is exhibited in the form of stiffness ellipsoids. A case is studied and verifies the ability of the presented compliance device to realize the desired endpoint stiffness. As the stiffness adjustment range of electromagnetic spring is limited, the bound of physically realizable stiffness of the presented compliance device is also discussed.
引用
收藏
页码:94 / 107
页数:14
相关论文
共 50 条
  • [21] Design and Manufacturing of Variable Stiffness Mattress
    Xie, Ruinan
    Ulven, Chad
    Khoda, Bashir
    46TH SME NORTH AMERICAN MANUFACTURING RESEARCH CONFERENCE, NAMRC 46, 2018, 26 : 132 - 139
  • [22] Design of a Bioinspired Variable Stiffness Sensor
    Zarate, Jose
    Helbig, Thomas
    Witte, Hartmut
    2019 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS (ICM), 2019, : 376 - 381
  • [23] On a high-potential variable flexural stiffness device
    Henke, Markus
    Gerlach, Gerald
    SMART SENSORS, ACTUATORS, AND MEMS VI, 2013, 8763
  • [24] Design of a Variable Stiffness Spring with Human-Selectable Stiffness
    Mathews, Chase W.
    Braun, David J.
    2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2023), 2023, : 7385 - 7390
  • [25] Variable stiffness methods for robots: a review
    Li, Zhang
    Chu, Xiaoyu
    Hu, Xinye
    Zhang, Zhiyi
    Li, Nanpei
    Li, Junfeng
    SMART MATERIALS AND STRUCTURES, 2024, 33 (06)
  • [26] Algorithmic Design of Low-Power Variable-Stiffness Mechanisms
    Chalvet, Vincent
    Braun, David J.
    IEEE TRANSACTIONS ON ROBOTICS, 2017, 33 (06) : 1508 - 1515
  • [27] Development and testing of a newly proposed continuously variable stiffness/damping device for vibration control
    Walsh, Kenneth K.
    Grupenhof, Kyle D.
    Little, Kirby L.
    Martin, Avery
    Moore, Carl A., Jr.
    SENSORS AND SMART STRUCTURES TECHNOLOGIES FOR CIVIL, MECHANICAL, AND AEROSPACE SYSTEMS 2012, PTS 1 AND 2, 2012, 8345
  • [28] Design and Control of a Continuum Arm with Variable Stiffness
    Geng S.-N.
    Wang Y.-Y.
    Chen L.-S.
    Wang C.
    Kang R.-J.
    Kang, Rong-Jie (rjkang@tju.edu.cn), 2018, China Spaceflight Society (39): : 1391 - 1400
  • [29] BIPED ROBOT DESIGN WITH VARIABLE ANKLE STIFFNESS
    Zang, Xizhe
    Lin, Zhenkun
    Sun, Xinran
    Liu, Yixiang
    JOURNAL OF MECHANICS IN MEDICINE AND BIOLOGY, 2017, 17 (07)
  • [30] Design of a Variable Stiffness Soft Dexterous Gripper
    Al Abeach, Loai A. T.
    Nefti-Meziani, Samia
    Davis, Steve
    SOFT ROBOTICS, 2017, 4 (03) : 274 - 284