Asymptotics and optimal bandwidth for nonparametric estimation of density level sets

被引:6
作者
Qiao, Wanli [1 ]
机构
[1] George Mason Univ, Dept Stat, 4400 Univ Dr,MS 4A7, Fairfax, VA 22030 USA
关键词
Level set; optimal bandwidth; kernel density estimation; symmetric difference; CONFIDENCE-REGIONS; CROSS-VALIDATION; SELECTION; RATES; CHOICE; ERROR; CONSISTENCY; CONTOUR; UNIFORM;
D O I
10.1214/19-EJS1668
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Bandwidth selection is crucial in the kernel estimation of density level sets. A risk based on the symmetric difference between the estimated and true level sets is usually used to measure their proximity. In this paper we provide an asymptotic L-p approximation to this risk, where p is characterized by the weight function in the risk. In particular the excess risk corresponds to an L-2 type of risk, and is adopted to derive an optimal bandwidth for nonparametric level set estimation of d-dimensional density functions (d >= 1). A direct plug-in bandwidth selector is developed for kernel density level set estimation and its efficacy is verified in numerical studies.
引用
收藏
页码:302 / 344
页数:43
相关论文
共 65 条
[1]  
[Anonymous], 2004, Tubes. Progr. Math.
[2]  
[Anonymous], 1985, NONPARAMETRIC DENSIT
[3]  
[Anonymous], 1959, Transactions of the American Mathematical Society, DOI DOI 10.1090/S0002-9947-1959-0110078-1
[4]  
[Anonymous], 2015, ARXIV150107000
[5]  
[Anonymous], 2017, ARXIV170400642
[6]  
ARIASCASTRO E, 2016, J MACHINE LEARNING R, V17, P1
[7]   Total error in a plug-in estimator of level sets [J].
Baíllo, A .
STATISTICS & PROBABILITY LETTERS, 2003, 65 (04) :411-417
[8]   Set estimation and nonparametric detection [J].
Baíllo, A ;
Cuevas, A ;
Justel, A .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2000, 28 (04) :765-782
[9]   Exact rates in density support estimation [J].
Biau, Gerard ;
Cadre, Benoit ;
Pelletier, Bruno .
JOURNAL OF MULTIVARIATE ANALYSIS, 2008, 99 (10) :2185-2207
[10]  
BOWMAN AW, 1984, BIOMETRIKA, V71, P353