Development of a Computational System to Improve Wind Farm Layout, Part II: Wind Turbine Wakes Interaction

被引:10
作者
Rodrigues, Rafael V. [1 ]
Lengsfeld, Corinne [1 ]
机构
[1] Univ Denver, Dept Mech & Mat Engn, Denver, CO 80210 USA
关键词
wind turbine aerodynamics; wake aerodynamics; computational fluid dynamics; MEXICO experiment; wind farms; wind turbines interaction; wind farm modeling; LARGE-EDDY SIMULATION; NUMERICAL SIMULATIONS; ACTUATOR DISC; FLOW; MODEL; POWER; VALIDATION; INFLOW; CFD; VERIFICATION;
D O I
10.3390/en12071328
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The second part of this work describes a wind turbine Computational Fluid Dynamics (CFD) simulation capable of modeling wake effects. The work is intended to establish a computational framework from which to investigate wind farm layout. Following the first part of this work that described the near wake flow field, the physical domain of the validated model in the near wake was adapted and extended to include the far wake. Additionally, the numerical approach implemented allowed to efficiently model the effects of the wake interaction between rows in a wind farm with reduced computational costs. The influence of some wind farm design parameters on the wake development was assessed: Tip Speed Ratio (TSR), free-stream velocity, and pitch angle. The results showed that the velocity and turbulence intensity profiles in the far wake are dependent on the TSR. The wake profile did not present significant sensitivity to the pitch angle for values kept close to the designed condition. The capability of the proposed CFD model showed to be consistent when compared with field data and kinematical models results, presenting similar ranges of wake deficit. In conclusion, the computational models proposed in this work can be used to improve wind farm layout considering wake effects.
引用
收藏
页数:27
相关论文
共 68 条
[1]   Experimental and numerical studies on the wake behavior of a horizontal axis wind turbine [J].
Abdelsalam, Ali M. ;
Boopathi, K. ;
Gomathinayagam, S. ;
Kumar, S. S. Hari Krishnan ;
Ramalingam, Velraj .
JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 2014, 128 :54-65
[2]   Wake prediction of horizontal-axis wind turbine using full-rotor modeling [J].
AbdelSalam, Ali M. ;
Ramalingam, Velraj .
JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 2014, 124 :7-19
[3]   The Effect of Free-Atmosphere Stratification on Boundary-Layer Flow and Power Output from Very Large Wind Farms [J].
Abkar, Mahdi ;
Porte-Agel, Fernando .
ENERGIES, 2013, 6 (05) :2338-2361
[4]   Experimental investigation of wake effects on wind turbine performance [J].
Adaramola, M. S. ;
Krogstad, P. -A. .
RENEWABLE ENERGY, 2011, 36 (08) :2078-2086
[6]   A viscous three-dimensional differential/actuator-disk method for the aerodynamic analysis of wind farms [J].
Ammara, I ;
Leclerc, C ;
Masson, C .
JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 2002, 124 (04) :345-356
[7]   Quantifying the sensitivity of wind farm performance to array layout options using large-eddy simulation [J].
Archer, Cristina L. ;
Mirzaeisefat, Sina ;
Lee, Sang .
GEOPHYSICAL RESEARCH LETTERS, 2013, 40 (18) :4963-4970
[8]   Modelling and Measuring Flow and Wind Turbine Wakes in Large Wind Farms Offshore [J].
Barthelmie, R. J. ;
Hansen, K. ;
Frandsen, S. T. ;
Rathmann, O. ;
Schepers, J. G. ;
Schlez, W. ;
Phillips, J. ;
Rados, K. ;
Zervos, A. ;
Politis, E. S. ;
Chaviaropoulos, P. K. .
WIND ENERGY, 2009, 12 (05) :431-444
[9]   Comparison of the wake recovery of the axial-flow and cross-flow turbine concepts [J].
Boudreau, Matthieu ;
Dumas, Guy .
JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 2017, 165 :137-152
[10]   Numerical investigation of wind turbine wake development in directionally sheared inflow [J].
Bromm, Marc ;
Vollmer, Lukas ;
Kuehn, Martin .
WIND ENERGY, 2017, 20 (03) :381-395