On the structure of cube tilings of R3 and R4

被引:4
作者
Kisielewicz, Andrzej P. [1 ]
机构
[1] Uniwersytet Zielonogorski, Wydzial Matemat Informat & Ekonometrii, PL-65516 Zielona Gora, Poland
关键词
Cube tiling; Block; Geometric tomography; COMPLETE CONFORMANCE; CONJECTURE; DIMENSIONS; SPACE;
D O I
10.1016/j.jcta.2012.06.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A family of translates of the unit cube [0, 1)(d) + T = ([0, 1)(d) + t: t is an element of T]. T subset of R-d, is called a cube tiling of Rd if cubes from this family are pairwise disjoint and boolean OR(t is an element of T) [0, 1)(d) + t = R-d. A non-empty set B = B-1 x ... x B-d subset of R-d is a block if there is a family of pairwise disjoint unit cubes [0, 1)(d) + S, S subset of R-d, such that B = boolean OR(t is an element of S)[0,1)(d) -t and for every t, t' is an element of S there is i is an element of {1, ... , d} such that t(i) - t(i)' is an element of Z \ {0}. A cube tiling of R-d is blockable if there is a finite family of disjoint blocks B, vertical bar B vertical bar > 1, with the property that every cube from the tiling is contained in exactly one block of the family B. We construct a cube tiling T of R-4 which, in contrast to cube tilings of R-3, is not blockable. We give a new proof of the theorem saying that every cube tiling of R-3 is blockable. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 22 条
[1]   CUBE TILING AND COVERING A COMPLETE GRAPH [J].
CORRADI, K ;
SZABO, S .
DISCRETE MATHEMATICS, 1990, 85 (03) :319-321
[2]  
Corradi K., 1990, Period. Math. Hung., V21, P95, DOI 10.1007/BF01946848
[3]  
DiVincenzo D.P., 2003, COMMUN MATH PHYS, V238, P279
[4]  
Gardner R. J., 1995, ENCY MATH APPL
[5]   Minimal partitions of a box into boxes [J].
Grytczuk, J ;
Kisielewicz, A ;
Przeskawski, K .
COMBINATORICA, 2004, 24 (04) :605-614
[6]  
HAJOS G, 1941, MATH Z, V47, P427
[7]  
Keller OH, 1930, J REINE ANGEW MATH, V163, P231
[8]  
Keller OH, 1937, J REINE ANGEW MATH, V177, P61
[9]   Polyboxes, cube tilings and rigidity [J].
Kisielewicz, Andrzej P. ;
Przeslawski, Krzysztof .
DISCRETE & COMPUTATIONAL GEOMETRY, 2008, 40 (01) :1-30
[10]  
Kolountzakis MN., 1998, Electron. J. Comb, V5, P14, DOI [10.37236/1352, DOI 10.37236/1352]