Inner Product Spaces and Quadratic Functional Equations

被引:0
|
作者
Park, Choonkil [1 ]
Park, Won-Gil [2 ]
Rassias, Themistocles M. [3 ]
机构
[1] Hanyang Univ, Dept Math, Seoul, South Korea
[2] Mokwon Univ, Daejeon, South Korea
[3] Natl Tech Univ Athens, Athens, Greece
来源
COMPUTATIONAL ANALYSIS, AMAT 2015 | 2016年 / 155卷
关键词
Inner product space; Quadratic mapping; Quadratic Functional equation; IIyers-Ulam stability; ULAM STABILITY; BANACH-SPACES; MAPPINGS;
D O I
10.1007/978-3-319-28443-9_10
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove that the norm defined over a real vector space V is induced by an inner product if and only if for a fixed integer n >= 2 n parallel to Sigma(n)(i=1)x(i)parallel to(2) + Sigma(n)(i=1)parallel to nx(i) - Sigma(n)(j=1)x(j)parallel to(2) = n(2)Sigma(n)(i=1)parallel to x(i)parallel to(2) holds for all x(1),..., x(n) is an element of V. Let V, W be real vector spaces. It is shown that if a mapping f : V -> W satisfies nf(Sigma(n)(i=1)x(i)) + Sigma(n)(i=1)f(nx(i) - Sigma(n)(j=1)x(j)) = n(2)Sigma(n)(i=1)f(x(i)), (n > 2) or nf(Sigma(n)(i=1)x(i)) + Sigma(n)(i=1)f(nx(i) - Sigma(n)(j=1)x(j)) = n(2) + n/2 Sigma(n)(i=1)f(x(i)) + n(2) - n/2 Sigma(n)(i=1)f(-x(i)), (n >= 2) for all x(1),..., x(n) is an element of V, then the mapping f : V -> W is Cauchy additive-quadratic. Furthermore, we prove the Hyers-Ulam stability of the above quadratic functional equations in Banach spaces.
引用
收藏
页码:137 / 151
页数:15
相关论文
共 50 条
  • [41] Alienation of the Quadratic and Additive Functional Equations
    M. Adam
    Analysis Mathematica, 2019, 45 : 449 - 460
  • [42] Functional equations in paranormed spaces
    Park, Choonkil
    Shin, Dong Yun
    ADVANCES IN DIFFERENCE EQUATIONS, 2012,
  • [43] Numerical Range on Weighted Hardy Spaces as Semi Inner Product Spaces
    Heydari, Mohammad Taghi
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2017, 25 (01): : 87 - 98
  • [44] Angles of Norm ed Linear Spaces and Characterizations of Inner Product Spaces
    郑永爱
    数学季刊, 1998, (01) : 70 - 73
  • [45] ON THE STABILITY OF THE QUADRATIC FUNCTIONAL EQUATION IN TOPOLOGICAL SPACES
    Adam, M.
    Czerwik, S.
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2007, 1 (02): : 245 - 251
  • [46] Stability of the quadratic functional equation in Lipschitz spaces
    Czerwik, S
    Dlutek, K
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 293 (01) : 79 - 88
  • [47] ON THE STABILITY OF SOME FUNCTIONAL EQUATIONS IN MENGER φ-NORMED SPACES
    Mihet, Dorel
    Saadati, Reza
    MATHEMATICA SLOVACA, 2014, 64 (01) : 209 - 228
  • [48] A new generalization of Gruss inequality in inner product spaces
    Ujevic, N
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2003, 6 (04): : 617 - 623
  • [49] Orthogonality of skew type and characterization of inner product spaces
    Xia, Jinyu
    Liu, Qi
    Wang, Yuxin
    Xu, Wenhui
    Hu, Yongmo
    Li, Yongjin
    ARABIAN JOURNAL OF MATHEMATICS, 2024, 13 (03) : 611 - 619
  • [50] CHARACTERIZATIONS OF INNER PRODUCT SPACES BY STRONGLY CONVEX FUNCTIONS
    Nikodem, Kazimierz
    Pales, Zsolt
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2011, 5 (01): : 83 - 87