Inner Product Spaces and Quadratic Functional Equations

被引:0
|
作者
Park, Choonkil [1 ]
Park, Won-Gil [2 ]
Rassias, Themistocles M. [3 ]
机构
[1] Hanyang Univ, Dept Math, Seoul, South Korea
[2] Mokwon Univ, Daejeon, South Korea
[3] Natl Tech Univ Athens, Athens, Greece
来源
COMPUTATIONAL ANALYSIS, AMAT 2015 | 2016年 / 155卷
关键词
Inner product space; Quadratic mapping; Quadratic Functional equation; IIyers-Ulam stability; ULAM STABILITY; BANACH-SPACES; MAPPINGS;
D O I
10.1007/978-3-319-28443-9_10
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove that the norm defined over a real vector space V is induced by an inner product if and only if for a fixed integer n >= 2 n parallel to Sigma(n)(i=1)x(i)parallel to(2) + Sigma(n)(i=1)parallel to nx(i) - Sigma(n)(j=1)x(j)parallel to(2) = n(2)Sigma(n)(i=1)parallel to x(i)parallel to(2) holds for all x(1),..., x(n) is an element of V. Let V, W be real vector spaces. It is shown that if a mapping f : V -> W satisfies nf(Sigma(n)(i=1)x(i)) + Sigma(n)(i=1)f(nx(i) - Sigma(n)(j=1)x(j)) = n(2)Sigma(n)(i=1)f(x(i)), (n > 2) or nf(Sigma(n)(i=1)x(i)) + Sigma(n)(i=1)f(nx(i) - Sigma(n)(j=1)x(j)) = n(2) + n/2 Sigma(n)(i=1)f(x(i)) + n(2) - n/2 Sigma(n)(i=1)f(-x(i)), (n >= 2) for all x(1),..., x(n) is an element of V, then the mapping f : V -> W is Cauchy additive-quadratic. Furthermore, we prove the Hyers-Ulam stability of the above quadratic functional equations in Banach spaces.
引用
收藏
页码:137 / 151
页数:15
相关论文
共 50 条
  • [31] REVERSES OF THE TRIANGLE INEQUALITY IN INNER PRODUCT SPACES
    Zhang, Lingling
    Ohwada, Tomoyoshi
    Cho, Muneo
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2014, 17 (02): : 539 - 555
  • [32] Weak n-inner product spaces
    Nicuşor Minculete
    Radu Păltănea
    Annals of Functional Analysis, 2021, 12
  • [33] Frames in Semi-inner Product Spaces
    Sahu, N. K.
    Mohapatra, Ram N.
    MATHEMATICAL ANALYSIS AND ITS APPLICATIONS, 2015, 143 : 149 - 158
  • [34] NORM INEQUALITIES AND CHARACTERIZATIONS OF INNER PRODUCT SPACES
    Amini-Harandi, A.
    Rahimi, M.
    Rezaie, M.
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2018, 21 (01): : 287 - 300
  • [35] Inner product spaces and minimal values of functionals
    Chelidze, G
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 298 (01) : 106 - 113
  • [36] GEOMETRIC CONSTANTS AND CHARACTERIZATIONS OF INNER PRODUCT SPACES
    Tanaka, Ryotaro
    Ohwada, Tomoyoshi
    Saito, Kichi-Suke
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2014, 17 (02): : 513 - 520
  • [37] Stabilities and instabilities of additive-quadratic 3D functional equations in paranormed spaces
    Karthikeyan, S.
    Kumar, T. R. K.
    Vijayakumar, S.
    Palani, P.
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2023, 28 (01): : 37 - 51
  • [38] STABILITY OF EULER-LAGRANGE QUADRATIC FUNCTIONAL EQUATIONS IN NON-ARCHIMEDEAN NORMED SPACES
    Sadeghi, Ghadir
    Saadati, Reza
    Janfada, Mohammad
    Rassias, John M.
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2011, 40 (04): : 571 - 579
  • [39] ON THE FUZZY STABILITY OF QUADRATIC FUNCTIONAL EQUATIONS
    Lee, Jung Rye
    Jang, Sun-Young
    Shin, Dong Yun
    JOURNAL OF THE KOREAN SOCIETY OF MATHEMATICAL EDUCATION SERIES B-PURE AND APPLIED MATHEMATICS, 2010, 17 (01): : 65 - 80
  • [40] Alienation of the Quadratic and Additive Functional Equations
    Adam, M.
    ANALYSIS MATHEMATICA, 2019, 45 (03) : 449 - 460