Inner Product Spaces and Quadratic Functional Equations

被引:0
|
作者
Park, Choonkil [1 ]
Park, Won-Gil [2 ]
Rassias, Themistocles M. [3 ]
机构
[1] Hanyang Univ, Dept Math, Seoul, South Korea
[2] Mokwon Univ, Daejeon, South Korea
[3] Natl Tech Univ Athens, Athens, Greece
来源
COMPUTATIONAL ANALYSIS, AMAT 2015 | 2016年 / 155卷
关键词
Inner product space; Quadratic mapping; Quadratic Functional equation; IIyers-Ulam stability; ULAM STABILITY; BANACH-SPACES; MAPPINGS;
D O I
10.1007/978-3-319-28443-9_10
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove that the norm defined over a real vector space V is induced by an inner product if and only if for a fixed integer n >= 2 n parallel to Sigma(n)(i=1)x(i)parallel to(2) + Sigma(n)(i=1)parallel to nx(i) - Sigma(n)(j=1)x(j)parallel to(2) = n(2)Sigma(n)(i=1)parallel to x(i)parallel to(2) holds for all x(1),..., x(n) is an element of V. Let V, W be real vector spaces. It is shown that if a mapping f : V -> W satisfies nf(Sigma(n)(i=1)x(i)) + Sigma(n)(i=1)f(nx(i) - Sigma(n)(j=1)x(j)) = n(2)Sigma(n)(i=1)f(x(i)), (n > 2) or nf(Sigma(n)(i=1)x(i)) + Sigma(n)(i=1)f(nx(i) - Sigma(n)(j=1)x(j)) = n(2) + n/2 Sigma(n)(i=1)f(x(i)) + n(2) - n/2 Sigma(n)(i=1)f(-x(i)), (n >= 2) for all x(1),..., x(n) is an element of V, then the mapping f : V -> W is Cauchy additive-quadratic. Furthermore, we prove the Hyers-Ulam stability of the above quadratic functional equations in Banach spaces.
引用
收藏
页码:137 / 151
页数:15
相关论文
共 50 条
  • [21] On restricted functional inequalities associated with quadratic functional equations
    Tareeghee, M. A.
    Najati, A.
    Abdollahpour, M. R.
    Noori, B.
    AEQUATIONES MATHEMATICAE, 2022, 96 (04) : 763 - 772
  • [22] On restricted functional inequalities associated with quadratic functional equations
    M. A. Tareeghee
    A. Najati
    M. R. Abdollahpour
    B. Noori
    Aequationes mathematicae, 2022, 96 : 763 - 772
  • [23] Random Stability of a Functional Equation Related to An Inner Product Space
    Shin, Dong Yun
    Lee, Jung Rye
    Park, Choonkil
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2012, 5 (04): : 540 - 553
  • [24] Asymptotic aspect of the quadratic functional equation in multi-normed spaces
    Moslehian, M. S.
    Nikodem, K.
    Popa, D.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 355 (02) : 717 - 724
  • [25] Inner product spaces for Bayesian networks
    Nakamura, A
    Schmitt, M
    Schmitt, N
    Simon, HU
    JOURNAL OF MACHINE LEARNING RESEARCH, 2005, 6 : 1383 - 1403
  • [26] Trigonometry in complex inner product spaces
    Albahboh, Hussin
    Gingold, Harry
    Quaintance, Jocelyn
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 575 : 216 - 234
  • [27] Functional equations in matrix normed spaces
    Lee, Jung Rye
    Park, Choonkil
    Shin, Dong Yun
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2015, 125 (03): : 399 - 412
  • [28] Stability of a Generalization of Cauchy's and the Quadratic Functional Equations in Quasi-Banach Spaces
    Bantaojai, Thanatporn
    Suanoom, Cholatis
    THAI JOURNAL OF MATHEMATICS, 2020, 18 (03): : 963 - 974
  • [29] A functional equation related to inner product spaces in non-Archimedean L-random normed spaces
    Vahidi, Javad
    Park, Choonkil
    Saadati, Reza
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2012,
  • [30] Resolvent matrices in degenerated inner product spaces
    Woracek, H
    MATHEMATISCHE NACHRICHTEN, 2000, 213 : 155 - 175