Inner Product Spaces and Quadratic Functional Equations

被引:0
|
作者
Park, Choonkil [1 ]
Park, Won-Gil [2 ]
Rassias, Themistocles M. [3 ]
机构
[1] Hanyang Univ, Dept Math, Seoul, South Korea
[2] Mokwon Univ, Daejeon, South Korea
[3] Natl Tech Univ Athens, Athens, Greece
来源
COMPUTATIONAL ANALYSIS, AMAT 2015 | 2016年 / 155卷
关键词
Inner product space; Quadratic mapping; Quadratic Functional equation; IIyers-Ulam stability; ULAM STABILITY; BANACH-SPACES; MAPPINGS;
D O I
10.1007/978-3-319-28443-9_10
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove that the norm defined over a real vector space V is induced by an inner product if and only if for a fixed integer n >= 2 n parallel to Sigma(n)(i=1)x(i)parallel to(2) + Sigma(n)(i=1)parallel to nx(i) - Sigma(n)(j=1)x(j)parallel to(2) = n(2)Sigma(n)(i=1)parallel to x(i)parallel to(2) holds for all x(1),..., x(n) is an element of V. Let V, W be real vector spaces. It is shown that if a mapping f : V -> W satisfies nf(Sigma(n)(i=1)x(i)) + Sigma(n)(i=1)f(nx(i) - Sigma(n)(j=1)x(j)) = n(2)Sigma(n)(i=1)f(x(i)), (n > 2) or nf(Sigma(n)(i=1)x(i)) + Sigma(n)(i=1)f(nx(i) - Sigma(n)(j=1)x(j)) = n(2) + n/2 Sigma(n)(i=1)f(x(i)) + n(2) - n/2 Sigma(n)(i=1)f(-x(i)), (n >= 2) for all x(1),..., x(n) is an element of V, then the mapping f : V -> W is Cauchy additive-quadratic. Furthermore, we prove the Hyers-Ulam stability of the above quadratic functional equations in Banach spaces.
引用
收藏
页码:137 / 151
页数:15
相关论文
共 50 条
  • [1] Inner product spaces and quadratic functional equations
    Jae-Hyeong Bae
    Batool Noori
    M. B. Moghimi
    Abbas Najati
    Advances in Difference Equations, 2021
  • [2] Inner product spaces and quadratic functional equations
    Bae, Jae-Hyeong
    Noori, Batool
    Moghimi, M. B.
    Najati, Abbas
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [3] INNER PRODUCT SPACES AND FUNCTIONAL EQUATIONS
    Cho, Yeol Je
    Park, Choonkil
    Rassias, Themistocles M.
    Saadati, Reza
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2011, 13 (02) : 296 - 304
  • [4] Hyperstability of a quadratic functional equation on abelian group and inner product spaces
    El-Fassi, Iz-Iddine
    Kim, Gwang Hui
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (09): : 5353 - 5361
  • [5] QUADRATIC MAPPINGS ASSOCIATED WITH INNER PRODUCT SPACES
    Lee, Sung Jin
    KOREAN JOURNAL OF MATHEMATICS, 2011, 19 (01): : 77 - 85
  • [6] Normed spaces equivalent to inner product spaces and stability of functional equations
    Chmielinski, Jacek
    AEQUATIONES MATHEMATICAE, 2014, 87 (1-2) : 147 - 157
  • [7] Normed spaces equivalent to inner product spaces and stability of functional equations
    Jacek Chmieliński
    Aequationes mathematicae, 2014, 87 : 147 - 157
  • [8] Stability and hyperstability of a quadratic functional equation and a characterization of inner product spaces
    El-Fassi, Iz-iddine
    Park, Choonkil
    Kim, Gwang Hui
    DEMONSTRATIO MATHEMATICA, 2018, 51 (01) : 295 - 303
  • [9] Additive and Frechet functional equations on restricted domains with some characterizations of inner product spaces
    Park, Choonkil
    Najati, Abbas
    Noori, Batool
    Moghimi, Mohammad B.
    AIMS MATHEMATICS, 2021, 7 (03): : 3379 - 3394
  • [10] STABILITY OF QUADRATIC FUNCTIONAL EQUATIONS IN RANDOM NORMED SPACES
    Schin, Seung Won
    Ki, DoHyeong
    Chang, JaeWon
    Kim, Min June
    Park, Choonkil
    KOREAN JOURNAL OF MATHEMATICS, 2010, 18 (04): : 395 - 407