Challenges of laser spectrum metrology in 248 and 193-nm lithography

被引:0
|
作者
Ershov, A [1 ]
Smith, S [1 ]
机构
[1] Cymer Inc, San Diego, CA 92127 USA
来源
关键词
excimer laser; metrology; spectrum measurements;
D O I
10.1117/12.435657
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Several approaches for high-resolution laser metrology have been discussed. One approach is to use a multiple-etalon spectrometer, which has two or more etalons with different FSRs. This approache can increase both the resolution at FWHM and the tails, as well as increase the spectrum range of the instrument. With the proper alignment, this multiple etalon configuration can produce an instrument whose resolution is equal to or better than the highest resolution etalon while still maintaining the FSR of the lower resolution etalon. In the configuration tested, a spectrometer designed for 248nm was constructed with a 2pm etalon and a 20pm etalon. The resolution of this multi-pass, multi-etalon (MPME) spectrometer produced an instrument function of 0.086pm FWHM and 0.339pm for the integrated 95% level over an integration range of 20pm. Another approach is to use a combination of diffraction grating and etalon - based spectrometers. In this approach, the etalon provides high resolution for FWHM measurements, while diffraction grating provides accurate measurement of the spectrum tails over the wide scanning range. This idea has been tested with a 193 nm instrument.
引用
收藏
页码:1219 / 1228
页数:10
相关论文
共 50 条
  • [1] 193-nm lithography
    Rothschild, M
    Forte, AR
    Horn, MW
    Kunz, RR
    Palmateer, SC
    Sedlacek, JHC
    LASERS AS TOOLS FOR MANUFACTURING OF DURABLE GOODS AND MICROELECTRONICS, 1996, 2703 : 398 - 404
  • [2] 193-NM LITHOGRAPHY
    ROTHSCHILD, M
    FORTE, AR
    HORN, MW
    KUNZ, RR
    PALMATEER, SC
    SEDLACEK, JHC
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 1995, 1 (03) : 916 - 923
  • [3] Novel fluorinated polymers for application in 193-nm lithography and 193-nm immersion lithography
    Yamashita, Tsuneo
    Ishikawa, Takuji
    Yoshida, Tomohiro
    Hayami, Takashi
    Aoyama, Hirokazu
    ADVANCES IN RESIST TECHNOLOGY AND PROCESSING XXIII, PTS 1 AND 2, 2006, 6153 : U783 - U795
  • [4] Subpicometer ArF excimer laser for 193-nm lithography
    Akita, J
    Komori, H
    Kouda, N
    Yoshioka, S
    Itakura, Y
    Mizoguchi, H
    OPTICAL MICROLITHOGRAPHY X, 1997, 3051 : 890 - 898
  • [5] Photoresists for 193-nm lithography
    Allen, RD
    Wallraff, GM
    Hofer, DC
    Kunz, RR
    IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 1997, 41 (1-2) : 95 - 104
  • [6] Attenuated phase shift mask materials for 248- and 193-nm lithography
    Smith, Bruce W.
    Butt, Shahid
    Alam, Zulfiqar
    Microlithography World, 6 (02):
  • [7] Europeans target 193-nm lithography
    Moss, T
    PHOTONICS SPECTRA, 1996, 30 (03) : 27 - 28
  • [8] Laser spectrum line shape metrology at 193 nm
    Ershov, AI
    Padmabandu, GG
    Tyler, J
    Das, PP
    OPTICAL MICROLITHOGRAPHY XIII, PTS 1 AND 2, 2000, 4000 : 1405 - 1417
  • [9] Bilayer resist approach for 193-nm lithography
    Schaedeli, U
    Tinguely, E
    Blakeney, AJ
    Falcigno, P
    Kunz, RR
    ADVANCES IN RESIST TECHNOLOGY AND PROCESSING XIII, 1996, 2724 : 344 - 354
  • [10] Assessment of optical coatings for 193-nm lithography
    Liberman, V
    Rothschild, M
    Sedlacek, JHC
    Uttaro, RS
    Grenville, A
    Bates, AK
    Van Peski, C
    OPTICAL MICROLITHOGRAPHY XI, 1998, 3334 : 470 - 479