Monotone Combined Finite Volume-Finite Element Scheme for a Bone Healing Model

被引:1
|
作者
Bessemoulin-Chatard, Marianne [1 ]
Saad, Mazen [2 ]
机构
[1] Univ Nantes, LMJL, UMR6629, 2 Rue Houssiniere,BP 92208, F-44322 Nantes 3, France
[2] Ecole Cent Nantes, LMJL, UMR6629, F-44321 Nantes 3, France
来源
FINITE VOLUMES FOR COMPLEX APPLICATIONS VII - ELLIPTIC, PARABOLIC AND HYPERBOLIC PROBLEMS, FVCA 7 | 2014年 / 78卷
关键词
D O I
10.1007/978-3-319-05591-6_49
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define a combined edge FV-FE scheme for a bone healing model. This choice of discretization allows to take into account anisotropic diffusions and does not impose any restrictions on the mesh. Moreover, following [3], we propose a nonlinear correction to obtain a monotone scheme. We present some numerical experiments which show its good behavior.
引用
收藏
页码:497 / 505
页数:9
相关论文
共 50 条
  • [31] A monotone finite element scheme for convection-diffusion equations
    Xu, JC
    Zikatanov, L
    MATHEMATICS OF COMPUTATION, 1999, 68 (228) : 1429 - 1446
  • [32] Finite volume element method for monotone nonlinear elliptic problems
    Bi, Chunjia
    Lin, Yanping
    Yang, Min
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2013, 29 (04) : 1097 - 1120
  • [33] A combined finite volume-nonconforming finite element scheme for compressible two phase flow in porous media
    Saad, Bilal
    Saad, Mazen
    NUMERISCHE MATHEMATIK, 2015, 129 (04) : 691 - 722
  • [34] Combined nonconforming/mixed-hybrid finite element-finite volume scheme for degenerate parabolic problems
    Eymard, R
    Hilhorst, D
    Vohralík, M
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, PROCEEDINGS, 2004, : 288 - 297
  • [35] A combined finite volume-nonconforming/mixed-hybrid finite element scheme for degenerate parabolic problems
    Eymard, Robert
    Hilhorst, Danielle
    Vohralik, Martin
    NUMERISCHE MATHEMATIK, 2006, 105 (01) : 73 - 131
  • [36] COMBINED FINITE ELEMENT-FINITE VOLUME SOLUTION OF COMPRESSIBLE FLOW
    FEISTAUER, M
    FELCMAN, J
    LUKACOVAMEDVIDOVA, M
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1995, 63 (1-3) : 179 - 199
  • [37] Analysis of a finite volume-finite element method for Darcy-Brinkman two-phase flows in porous media
    El Dine, Houssein Nasser
    Saad, Mazen
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 337 : 51 - 72
  • [38] An improved monotone finite volume scheme for diffusion equation on polygonal meshes
    Sheng, Zhiqiang
    Yuan, Guangwei
    JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (09) : 3739 - 3754
  • [39] A SYMMETRIC FINITE VOLUME ELEMENT SCHEME ON TETRAHEDRON GRIDS
    Nie, Cunyun
    Tan, Min
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2012, 49 (04) : 765 - 778
  • [40] AN UNCONDITIONALLY STABLE FINITE ELEMENT-FINITE VOLUME PRESSURE CORRECTION SCHEME FOR THE DRIFT-FLUX MODEL
    Gastaldo, Laura
    Herbin, Raphaele
    Latche, Jean-Claude
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2010, 44 (02): : 251 - 287