Robust tools for the imperfect world

被引:38
|
作者
Filzmoser, Peter [1 ]
Todorov, Valentin [2 ]
机构
[1] Vienna Univ Technol, Dept Stat & Probabil Theory, A-1040 Vienna, Austria
[2] Vienna Int Ctr, UN Ind Dev Org UNIDO, A-1400 Vienna, Austria
关键词
Robustness; MCD; Outlier; High breakdown; PCA; Statistical design pattern; COVARIANCE DETERMINANT ESTIMATOR; PRINCIPAL COMPONENT ANALYSIS; PROJECTION-PURSUIT APPROACH; MULTIVARIATE LOCATION; DISPERSION MATRICES; OUTLIER DETECTION; FAST ALGORITHM; S-ESTIMATORS; EFFICIENCY; BEHAVIOR;
D O I
10.1016/j.ins.2012.10.017
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Data outliers or other data inhomogeneities lead to a violation of the assumptions of traditional statistical estimators and methods. Robust statistics offers tools that can reliably work with contaminated data. Here, outlier detection methods in low and high dimension, as well as important robust estimators and methods for multivariate data are reviewed, and the most important references to the corresponding literature are provided. Algorithms are discussed, and routines in R are provided, allowing for a straightforward application of the robust methods to real data. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:4 / 20
页数:17
相关论文
共 50 条
  • [41] Robust Beamforming Design under Imperfect CSI for Two-Way Relay System with Reciprocal Channels
    Wang, Yi
    Song, Kang
    Ji, Baofeng
    Huang, Yongming
    Yang, Luxi
    2014 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS (ICCS), 2014, : 497 - 501
  • [42] Robust design optimization of imperfect stiffened shells using an active learning method and a hybrid surrogate model
    Meng, Zeng
    Zhang, Zhuohui
    Zhou, Huanlin
    Chen, Hanshu
    Yu, Bo
    ENGINEERING OPTIMIZATION, 2020, 52 (12) : 2044 - 2061
  • [43] Kernel robust singular value decomposition
    Lima Neto, Eufrasio de A.
    Rodrigues, Paulo C.
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 211
  • [44] A Deterministic Algorithm for Robust Location and Scatter
    Hubert, Mia
    Rousseeuw, Peter J.
    Verdonck, Tim
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2012, 21 (03) : 618 - 637
  • [45] On a robust and efficient maximum depth estimator
    Zuo YiJun
    Lai ShaoYong
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2009, 52 (06): : 1212 - 1232
  • [46] Robust sparse principal component analysis
    ZHAO Qian
    MENG DeYu
    XU ZongBen
    Science China(Information Sciences), 2014, 57 (09) : 175 - 188
  • [47] Robust sparse principal component analysis
    Zhao Qian
    Meng DeYu
    Xu ZongBen
    SCIENCE CHINA-INFORMATION SCIENCES, 2014, 57 (09) : 1 - 14
  • [48] A Lookahead Algorithm for Robust Subspace Recovery
    Wan, Guihong
    Schweitzer, Haim
    2021 21ST IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2021), 2021, : 1379 - 1384
  • [49] Robust sparse principal component analysis
    Qian Zhao
    DeYu Meng
    ZongBen Xu
    Science China Information Sciences, 2014, 57 : 1 - 14
  • [50] Inference for robust canonical variate analysis
    Van Aelst, Stefan
    Willems, Gert
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2010, 4 (2-3) : 181 - 197